Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 34, 2020

ON JENSEN'S FUNCTIONAL EQUATION

Luka Tikanadze

Abstract. Our aim is to give a martingale characterization to the general measurable solution of the Jensen functional equation. We show that the function $f = (f(x), x \in R)$ is a measurable solution of Jensen's functional equation if and only if the process $f(x + W_t)$ is a martingale for all $x \in R$, where W is a standard Brownian Motion.

Keywords and phrases: Martingales, functional equations, Brownian motion.

AMS subject classification (2010): 60G44, 60J65, 97I70.

1 Introduction. Let $W = (W_t, t \ge 0)$ be a standard Brownian Motion, defined on a complete probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Let $F = (\mathcal{F}_t, t \ge 0)$ be a filtration generated by the Brownian Motion $\mathcal{F}_t^W = \sigma(W_s, s \le t)$.

We consider the Jensen functional equation

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}, \quad x, y \in R.$$
(1)

It is well known that the general measurable solution of (1) is linear (see e.g. [1]). In the following theorem, which is our main result, we give an equivalent characterization of the general measurable solution of (1) in terms of martingale transformation of the Brownian motion.

Theorem. The function $f = (f(x), x \in R)$ is a measurable solution of equation (1) if and only if the process $f(x + W_t)$ is a martingale for all $x \in R$.

2 The proof of the main result. We shall often use the equality

$$f\left(\frac{x}{2}\right) = \frac{f\left(x\right) + f\left(0\right)}{2},\tag{2}$$

which follows from (1) taking y = 0. Before we start off with the proof of the main result let us bring the next

Lemma. Let ξ be a random variable having normal distribution with $E\xi = 0$. If f(x) is a measurable solution of Jensen's functional equation (1) then $f(\xi)$ is also normally distributed and

$$Ef\left(\xi\right) = f\left(0\right).$$

Proof. To show that $f(\xi)$ is normally distributed, as in [3], we use the Bernstein theorem. Let ξ and η be independent random variables, having normal distribution with zero mean and equal variances. Let

$$X = f(\xi)$$
 and $Y = f(\eta)$.

It follows from (1) and (2) that

$$\frac{X+Y}{2} = \frac{f(\xi) + f(\eta)}{2} = f\left(\frac{\xi+\eta}{2}\right) = \frac{f(\xi+\eta) + f(0)}{2}$$

and hence

$$X + Y = f(\xi + \eta) + f(0).$$
(3)

Putting $x = \xi - \eta$ and $y = \eta$ in (1)

$$\frac{f(\xi - \eta) + f(\eta)}{2} = f\left(\frac{\xi}{2}\right) = \frac{f(\xi) + f(0)}{2}$$

which implies that

$$X - Y = f(\xi - \eta) - f(0).$$
(4)

Since $\xi + \eta$ and $\xi - \eta$ are independent random variables, it follows from (3) and (4) that the random variables X + Y and X - Y are also independent. Therefore, by Bernstein's theorem [2] we conclude that $f(\xi)$ is normally distributed. This implies that

 $E\left|f\left(\xi\right)\right| < \infty.$

Now in equation (1) we can put $x = \xi$ and $y = -\xi$, which gives us

$$f(\xi) + f(-\xi) = 2f(0)$$
.

Taking expectations in the last equation on both sides and considering the fact that ξ has symmetrical distribution we get

$$Ef(\xi) = f(0).$$

The proof of the Theorem. Assume that the function $f = (f(x), x \in R)$ is a measurable solution of equation (1). We need to show that $f(W_t)$ is a martingale. By the Lemma $f(W_t)$ is integrable for any $t \ge 0$ and we have to show the martingale equality

$$E(f(W_t)|\mathcal{F}_s) = f(W_s) \quad \text{a.s.}$$
(5)

Taking $x = W_t - W_s$ and $y = W_s$ in equation (1) and using also equation (2) for $x = W_t$ we have

$$f\left(\frac{W_t}{2}\right) = \frac{f(W_t - W_s) + f(W_s)}{2} = \frac{f(W_t) + f(0)}{2},$$

from where we obtain

$$f(W_t) = f(W_t - W_s) + f(W_s) - f(0).$$

If we take conditional expectations in the last equation we get

$$E(f(W_t)|\mathcal{F}_s) = E(f(W_t - W_s) + f(W_s) - f(0)|\mathcal{F}_s) \quad a.s.$$

As long as $W_t - W_s$ is independent of \mathcal{F}_s filtration and W_s is \mathcal{F}_s measurable, by the properties of conditional expectation we will have

$$E\left(f\left(W_{t}\right)|\mathcal{F}_{s}\right) = Ef\left(W_{t} - W_{s}\right) + f\left(W_{s}\right) - f\left(0\right) \quad a.s.$$

$$(6)$$

Since by the Lemma $Ef(W_t - W_s) = f(0)$, the martingale equality (5) follows from equation (6). Now it is easy to show that $f(x + W_t)$ is also a martingale. From (1) and (2) we will have

$$f\left(\frac{x+W_t}{2}\right) = \frac{f(x)+f(W_t)}{2} = \frac{f(x+W_t)+f(0)}{2},$$
(7)

which implies that from (7) we have

$$f(x + W_t) = f(x) + f(W_t) - f(0),$$

from where it is evident that $f(x + W_t)$ is also a martingale.

Now, if we assume that $f(x + W_t)$ is a martingale for every $x \in R$, then Theorem A1 from [4] implies that the function f is of the form

$$f(x) = ax + b, \quad a, b \in R,\tag{8}$$

which satisfies equation (1).

REFERENCES

- 1. ACZEL, J. Lectures on Functional Equations and their Applications. *Academic Press*, New York, London, 1966.
- BERNSTEIN, S.N. Ob odnom svoystve, harakterizuyushhem zakon Gaussa (Russian). [On a characteristic property of the normal law]. Tr. leningr. Polytech. Inst., 3 (1941), 21–22.
- SMIRNOV, S.N. A probabilistic note on the Cauchy functional equation. Aequat. Math., 93 2 (2019), 445–449.
- MANIA, M., TIKANADZE, L. Functional Equations and Martingales. arXiv:1912.06299 [math.PR], 25 Mar. 2020.

Received 28.05.2020; revised 30.07.2020; accepted 11.09.2020.

Author(s) address(es):

Luka Tikanadze Department of Mathematics, Faculty of Exact and Natural Sciences I. Javakhishvili Tbilisi State University University str. 13, 0186 Tbilisi, Georgia E-mail: tikanadzeluka@gmail.com