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ON AN APPLICATION OF DENSITY ESTIMATION CONSTRUCTED BY MEANS
OF CHAIN DEPENDENT SAMPLES

Beqnu Pharjiani Tsiala Kvatadze Zurab Kvatadze

Abstract. We consider r (r >1) sequences of random variables. The members of each sequence

are independent and identically distributed random variables. By application of Markov finite

stationary regular chain a sequence of chain dependent random variables is obtained. We use this

sequence as a sample and the Bartlett kernel to construct Rosenblatt-Parzen type estimation for

the density. Its accuracy is determined by L1 and L2 metrics. The obtained results are refined

in the case of smoothness coefficient an =
√
n . One example of an application of this estimation

is presented.
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1 Introduction. Nonparametric estimation of distribution density represents one
of the topical issues in mathematical statistics. Rosenblatt-Parzen-type kernel estimations
([1-4]) and projection-type estimations ([3, 5]]) are known for independent observations
of density. According to the constructed estimations, the accuracy of the density approx-
imation is considered by L2 ([1-3]) and L1 ([4, 5]) metrics.

From the 1980s of XX century began the construction of estimations with dependent
observations ([6, 7]). It was considered the Markov’s dependence, which is one of the forms
of weak dependence. After determining the limit distribution of the sums of conditionally
independent and chain-dependent random values [8], it became possible to construct a
density estimation with such type dependent observations [9].

2 Content. Let’s consider in narrow sense stationary two-component random se-
quence defined on a probability space (Ω,F,P)

{ξi, Xi}i≥1 , (1)

where Xi : Ω → Rm, and ξi : Ω → {b1, b2, ..., br}, (bi ∈ R1, i = 1, r) is a finite homoge-
neous regular Markov chain with initial probabilities π = (π1, π2, ...πr), πi = P (ξ1 = bi),
i = 1, r and with the matrix of transition probabilities P = (pij)i,j=1,r (see [8]).

Definition 1. A sequence {Xi}i≥1 from (1) is called a chain-dependent sequence if

for a natural n the trajectory of the chain ξ1n = (ξ1, ξ2, .., ξn) is fixed, then the ran-
dom variables X1, X2, . . . , Xn become independent and for all indices j1, j2, . . . , jk i, k,
(2 ≤ k ≤ n ;i ≤ n; 1 ≤ j1 < j2 < · · · < jk ≤ n) the following equalities are valid:

P(Xj1
,Xj2

,...,Xjk)|ξ1n = PXj1|ξj1 × PXj2|ξj2 × · · · × PXjk |ξjk , PXi|ξ1n = PXi|ξi ,
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where PX|Y is the conditional distribution of X for a given Y .

Example. (A construction of a chain-dependent sequence). Let’s consider the r
sequences of independent random vectors

{Xα
1 , X

α
2 , ..., X

α
n , ...}, α = 1, r.

Suppose that for each index α the components of the corresponding member of the se-
quence have the same distribution Pα, α = 1, r. If in i-th step the chain {ξi}i≥1 takes the

value: ξi = bα, (1 ≤ α ≤ r), then from (X1
i , X

2
i , , ..., X

r
i )

T take the value Xα
i , (1 ≤ α ≤ r)

and call it Yi. Thus we obtain chain-dependent sequence Yi =
r∑

α=1

Xα
i I(ξi=bα), where IA is

the indicator of a set A.
Let {an}n≥1 be a sequence of positive numbers such that

lim
n→∞

an = ∞, lim
n→∞

an
n

= 0.

Let us interpret the terms of our chain-dependent sequence {Xi}i≥1 as the observations
of certain random variable X . Assume further that the conditional distributions PXi|ξi=bi

have unknown densities fi(x), i = 1, r.

Theorem 1. Let fi ∈ L2 (−∞,∞), each fi, i = 1, r is continuously differentiable up to
order s (s ≥ 2, s is an even number) and fi

(s) (x) is a continuous bounded function. Let
k (x) be the function with properties: k (x) ∈ L2 (−∞,∞),

∫∞
−∞ k (x) dx = 1, k (−x) =

k (x), sup |k (x)| ≤ A < ∞,

∫ ∞

−∞
xik (x) dx = 0, i = 1, 2, . . . , s − 1;

∫ ∞

−∞
xsk (x) dx ̸=

0,

∫ ∞

−∞
xs |k (x)| dx < ∞. Then for each natural number n, the density estimation for

f (x) =
∑r

i=1 πifi (x) is the sum f̂n (x, an) =
an
n

n∑
j=1

k (an (x−Xj)) and for u(an) :=

E

∫ ∞

−∞

[
f̂n (x, an)− f̄ (x)

]2
dx we have the inequality

u (an) ≤

(
r∑

i=1

Mi

)2

+
an
n

∫ ∞

−∞
k2 (x) dx+

(
r∑

i=1

(
Ci(π, P )n−1 + πi

2
))

o
(an
n

)
, (2)

where

α =

∫ ∞

−∞
xsk (x) dx, Mi = T

1/2

i +

(
ci (π, p)

n

∫ ∞

−∞
f 2
i (x) dx

) 1
2

,

Ti =

(
an

−2s α2

(s!)2

∫ ∞

−∞

[
f
(s)
i (x)

]2
dx+ o

(
a−2s
n

))(ci (π, p)

n
+ πi

2

)
, i = 1, r.
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Theorem 2. Let’s the densities fi(x) i = 1, r have a compact support; fi, i = 1, r is
absolutely continuous and has a derivative f ′

i almost everywhere. f ′
i is absolutely contin-

uous and has derivative f ′′
i almost everywhere. f ′′

i is bounded and continuous. Moreover,
let k (x) be a bounded by finite constant even density with a compact support. Then the

estimation of density f̄ (x) is f̂n (x, an) and for J(an) :=
∫∞
−∞

∣∣∣f̂n − f̄ (x)
∣∣∣ dx we have the

inequality

EJ(an) ≤
√

an
n
α

√
2

π

r∑
i=1

∫ ∞

−∞

√
πifi(x)dx+

β

2a2n

r∑
i=1

πi

∫ ∞

−∞

∣∣∣fi′ ′(x)∣∣∣ dx
+

1√
n

r∑
i=1

√
ci(π, P ) + o

(√
an
n

)
.

where α :=
√∫∞

−∞ k2 (x) dx and β :=
∫∞
−∞ x2k (x) dx.

Corollary. If in the conditions of Theorem 1 k(x) = k̄(x) = 3
4
(1− x2)I(|x|≤1) is Bartlett’s

kernel, an =
√
n, and fi (x) ∈ W2

⋂
L2 (−∞,∞) , i = 1, r. Then for each natural n

the sum f̄n (x, an) = f̄n (x,
√
n) = 3

4
√
n

∑n
i=1(1 − n(x − Xi)

2)I[|x−Xi|≤ 1√
n
] is the density

estimation of f̄ (x) =
∑r

i=1 πifi (x) and according to (2) the following inequality is valid:

ū(
√
n) = E

∫ ∞

−∞

[
f̄n
(
x,
√
n
)
− f̄ (x)

]2
dx ≤

(
r∑

i=1

M̄i

)2

+
3

5
√
n

+

(
1

n

(
r∑

i=1

ci(π, P )

)
+

r∑
i=1

πi
2

)
o

(
1√
n

)
,

where

M i = T̄
1/2
i +

(
Cin

−1/2

∫ ∞

−∞
f 2
i (x) dx

) 1
2

,

T i =

(
0.01

n2

∫ ∞

−∞

[
f
(2)
i (x)

]2
dx+ o

(
1

n2

))(
ci(π, P ) + π2

i

)
,

i = 1, r .

3 Conclusions. It can be observed that during the proofs of the theorems on
the fixed trajectory ξ̄1n = (ξ1, ξ2, ..., ξn) the transition from mathematical expectation to

conditional mathematical expectation takes place (E[
⌢

f n (x)] = E{E[
⌢

f n (x)
∣∣ξ̄1n]}). The

sum under considered is divided into several summands. One of them will be reduced
to a fixed trajectory on such form for that we apply the known results. The inequalities
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of Fubini, Holder and Jensen and the properties of the ruling sequences are applied for
estimation of the remaining sums.

The applied method gives the possibility to construct nonparametric density esti-
mations with other types of dependent observations. It can also be used to construct
parametric estimations.
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