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FOURIER TRIGONOMETRIC SERIES WITH GAPS
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Abstract. The sufficient conditions of the generalized absolute convergence of Fourier trigono-

metric series with gaps are established for some classes of functions.
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1 Introduction. It is known that the principle of localization for absolute con-
vergence of Fourier series of the function f ∈ L(−π; π), generally speaking, is invalid [1,
p. 638]. But if, in addition, f has a Fourier series of the type

∞∑
k=1

(ank
cosnkx+ bnk

sinnkx),

where

lim
k→∞

min(nk − nk−1;nk+1 − nk)

lnnk

= ∞,

then as Noble [6] derived a number of properties of the coefficients ank
, bnk

under various
hypotheses about the behaviour of f in an arbitrary small interval take place.

Then Kennedy proved [5] that Noble’s theorems remain valid under the unique as-
sumptions nk+1 − nk → ∞ as k → ∞.

2 Content. Below assume, that f ∈ L(−π; π) is a real function periodic with
period 2π and Fourier series of f is given by

f(x) ∼
∞∑
k=1

(ank
cosnkx+ bnk

sinnkx),

where ank
, bnk

are Fourier coefficients of the function f and lim
k→∞

(nk+1 − nk) = ∞.

The problem of convergence of the series

∞∑
k=1

γkρ
r
nk
(f), 0 < r < 2,

is considered, where ρnk
(f) =

√
a2nk

+ b2nk
and γ = {γk}, k ∈ N, is the sequence of

nonnegative numbers, satisfying definite conditions.



Fourier Trigonometric Series with Gaps 63

A sequence γ = {γk ≥ 0}, k ∈ N, is said [2] to belong to the class Aα for some α ≥ 1, if( ∑
k∈Dµ

γα
k

) 1
α ≤ C · 2µ

1−α
α

∑
k∈Dµ−1

γk, µ ∈ N,

where D0 = {1}, Dµ = {2µ−1 + 1, . . . , 2µ}, µ ∈ N, and the constant C does not depend
on µ.

M(I) denotes a class of bounded functions on the segment I = [a; b].
BVs(I) is the class of the functions with bounded s-variation on the I.
The modulus of δ-variation of the function f ∈ M(I) is denoted by φ(n; δ; f ; I) and its

definition was introduced by Karchava [4], according to Chanturia’s modulus of variation
in the following way:

φ(0; δ; f ; I) = 0 for any δ > 0,

and

φ(n; δ; f ; I) = sup
Πn,δ

n∑
k=1

ω(f ; Ik), k ∈ N,

where Πn,δ is a system consisting of n nonintersecting intervals {Ik} of the segment I.
The length of each interval Ik is equal to δ, and ω(f ; Ik) is the oscillation of the function
f on Ik.

The following statement is true.

Theorem. Let f ∈ M(I), I = [x0 − δ1;x0 + δ1] be a proper subset of the interval
T = (−π; π), {γk} ∈ A 2

2−r
for some 0 < r < 2, then

∞∑
k=1

γkρ
r
nk
(f) ≤ C

∞∑
k=1

γkk
−r
( k∑

j=1

φ2(j; 1
k
; f ; I)

j2

) r
2
.

The Theorem for r = 1, γk = 1 leads to:

Corollary 1. If f ∈ M(I), then

∞∑
k=1

|ank
|+ |bnk

| ≤ C

∞∑
k=1

1

k

( k∑
j=1

φ2(j; 1
k
; f ; I)

j2

) 1
2
.

Corollary 1 was obtained by us earlier [7] and it was shown that from this corollary
follows Noble’s and Kennedy’s theorems about the absolute convergence of Fourier series
with gaps.

Corollary 2. Let f ∈ C(I) ∩ BVs(I), s ∈ [1; 2], {γk} ∈ A 2
2−r

, 0 < r < 2, then

∞∑
k=1

γkρ
r
nk
(f) ≤ C

∞∑
k=1

γkk
−rω(2−s) r

2

(
f ;

1

k
; I
)
,

where ω(f ; 1
k
; I) denotes the modulus of continuity of a function f on the segment I.

Corollary 2 presents the analogue of the theorem, obtained by Gogoladze L. and
Meskhia R. [3] for Fourier series with gaps.
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