Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 34, 2020

FOURIER TRIGONOMETRIC SERIES WITH GAPS

Rusudan Meskhia

Abstract. The sufficient conditions of the generalized absolute convergence of Fourier trigonometric series with gaps are established for some classes of functions.

Keywords and phrases: Fourier trigonometric series with gaps, the modulus of δ -variation.

AMS subject classification (2010): 42A20, 26A16.

1 Introduction. It is known that the principle of localization for absolute convergence of Fourier series of the function $f \in L(-\pi; \pi)$, generally speaking, is invalid [1, p. 638]. But if, in addition, f has a Fourier series of the type

$$\sum_{k=1}^{\infty} (a_{n_k} \cos n_k x + b_{n_k} \sin n_k x),$$

where

$$\lim_{k \to \infty} \frac{\min(n_k - n_{k-1}; n_{k+1} - n_k)}{\ln n_k} = \infty,$$

then as Noble [6] derived a number of properties of the coefficients a_{n_k} , b_{n_k} under various hypotheses about the behaviour of f in an arbitrary small interval take place.

Then Kennedy proved [5] that Noble's theorems remain valid under the unique assumptions $n_{k+1} - n_k \to \infty$ as $k \to \infty$.

2 Content. Below assume, that $f \in L(-\pi;\pi)$ is a real function periodic with period 2π and Fourier series of f is given by

$$f(x) \sim \sum_{k=1}^{\infty} (a_{n_k} \cos n_k x + b_{n_k} \sin n_k x),$$

where a_{n_k} , b_{n_k} are Fourier coefficients of the function f and $\lim_{k\to\infty}(n_{k+1}-n_k)=\infty$.

The problem of convergence of the series

$$\sum_{k=1}^{\infty} \gamma_k \rho_{n_k}^r(f), \ 0 < r < 2,$$

is considered, where $\rho_{n_k}(f) = \sqrt{a_{n_k}^2 + b_{n_k}^2}$ and $\gamma = \{\gamma_k\}, k \in \mathbb{N}$, is the sequence of nonnegative numbers, satisfying definite conditions.

A sequence $\gamma = \{\gamma_k \ge 0\}, k \in \mathbb{N}$, is said [2] to belong to the class A_α for some $\alpha \ge 1$, if

$$\left(\sum_{k\in D_{\mu}}\gamma_{k}^{\alpha}\right)^{\frac{1}{\alpha}} \leq C \cdot 2^{\mu \frac{1-\alpha}{\alpha}} \sum_{k\in D_{\mu-1}}\gamma_{k}, \ \mu \in \mathbb{N},$$

where $D_0 = \{1\}$, $D_{\mu} = \{2^{\mu-1} + 1, \dots, 2^{\mu}\}$, $\mu \in \mathbb{N}$, and the constant C does not depend on μ .

M(I) denotes a class of bounded functions on the segment I = [a; b].

 $BV_s(I)$ is the class of the functions with bounded s-variation on the I.

The modulus of δ -variation of the function $f \in M(I)$ is denoted by $\varphi(n; \delta; f; I)$ and its definition was introduced by Karchava [4], according to Chanturia's modulus of variation in the following way:

$$\varphi(0; \delta; f; I) = 0$$
 for any $\delta > 0$,

and

$$\varphi(n;\delta;f;I) = \sup_{\Pi_{n,\delta}} \sum_{k=1}^{n} \omega(f;I_k), \ k \in N,$$

where $\Pi_{n,\delta}$ is a system consisting of *n* nonintersecting intervals $\{I_k\}$ of the segment *I*. The length of each interval I_k is equal to δ , and $\omega(f; I_k)$ is the oscillation of the function f on I_k .

The following statement is true.

Theorem. Let $f \in M(I)$, $I = [x_0 - \delta_1; x_0 + \delta_1]$ be a proper subset of the interval $T = (-\pi; \pi), \{\gamma_k\} \in A_{\frac{2}{2-r}}$ for some 0 < r < 2, then

$$\sum_{k=1}^{\infty} \gamma_k \rho_{n_k}^r(f) \le C \sum_{k=1}^{\infty} \gamma_k k^{-r} \Big(\sum_{j=1}^k \frac{\varphi^2(j; \frac{1}{k}; f; I)}{j^2} \Big)^{\frac{r}{2}}.$$

The Theorem for r = 1, $\gamma_k = 1$ leads to:

Corollary 1. If $f \in M(I)$, then

$$\sum_{k=1}^{\infty} |a_{n_k}| + |b_{n_k}| \le C \sum_{k=1}^{\infty} \frac{1}{k} \left(\sum_{j=1}^{k} \frac{\varphi^2(j; \frac{1}{k}; f; I)}{j^2} \right)^{\frac{1}{2}}.$$

Corollary 1 was obtained by us earlier [7] and it was shown that from this corollary follows Noble's and Kennedy's theorems about the absolute convergence of Fourier series with gaps.

Corollary 2. Let $f \in C(I) \cap BV_s(I)$, $s \in [1; 2]$, $\{\gamma_k\} \in A_{\frac{2}{2-r}}$, 0 < r < 2, then

$$\sum_{k=1}^{\infty} \gamma_k \rho_{n_k}^r(f) \le C \sum_{k=1}^{\infty} \gamma_k k^{-r} \omega^{(2-s)\frac{r}{2}} \Big(f; \frac{1}{k}; I\Big),$$

where $\omega(f; \frac{1}{k}; I)$ denotes the modulus of continuity of a function f on the segment I.

Corollary 2 presents the analogue of the theorem, obtained by Gogoladze L. and Meskhia R. [3] for Fourier series with gaps.

REFERENCES

- BARI, N.K. Trigonometric Series (Russian). With the editorial collaboration of P. L. Ul'janov Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961.
- GOGOLADZE, L.D. On the uniform strong summability of multiple trigonometric Fourier series (Russian). Rep. Enlarged Sess. Semin. I. Vekua Appl. Math., 1, 2 (1985), 48–51.
- GOGOLADZE, L., MESKHIA, R. On the absolute convergence of trigonometric Fourier series. Proc. A. Razmadze Math. Inst., 141 (2006), 29–40.
- 4. KARCHAVA, T. On the absolute convergence of Fourier series. Georgian Math. J., 4, 4 (1997), 333–340.
- 5. KENNEDY, P.B. Fourier series with gaps. Quart. J. Math. Oxford Ser., 7, 2 (1956), 224–230.
- NOBLE, M.E. Coefficient properties of Fourier series with a gap condition. Math. Ann., 128 (1954), 55–62; correction, 256.
- MESKHIA, R. On some properties of trigonometric Fourier series with gaps. Proc. A. Razmadze Math. Inst., 156 (2011), 65–75.

Received 29.05.2020; accepted 29.09.2020.

Author(s) address(es):

Rusudan Meskhia Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University University str. 13, 0186 Tbilisi, Georgia E-mail: rusudan.meskhia@tsu.ge