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Abstract. Scale dependent space dimension models for quarkonium are considered. Confining

potential including topological fluctuations of the vacuum constructed.
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Quarkonium spectroscopy indicates that between valence quarks inside hadrons, the
potential on small scales has D = 3 Coulomb form and at hadronic scales has D = 1
Coulomb one. We may combine this two types of behavior and form an effective potential
in which at small scales dominates the D = 3 component and at hadronic scale the D = 1
component: the Coulomb-plus-linear potential (the “Cornell potential” [1] ),
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)
, µ = 1/a = 0.427GeV, x = µr, (1)

where k = 4
3
αs = 0.52 = x2

0, x0 = 0.72 and a = 2.34GeV −1 were chosen to fit the
quarkonium spectra.

An important step in the solution of a theoretical problem is to find a good initial
approximation in the corresponding mathematical model. Then by small deformations
and a few terms in perturbation expansion we describe a physical phenomenon. When a
deformation parameter (e.g. coupling constant) value increases, in some region the initial
approximation might change into a new form. In the case of QCD, the coupling constant
increases with increasing distance between quarks, and in the intermediate region (∼ 0.5
fm) the three dimensional hadronic space becomes a fractal - a space with intermediate
dimension. At the hadronic scale (∼ 1 fm) we again have a nice classical picture (one
dimensional space) and already one gluon exchange between valence quarks gives a con-
fining potential. In the paper [2] we extend investigations started in [3] and construct
such potentials and effective dimensions as functions of r.

Let us take one of the dimensions y as a circle with radius R. This corresponds to
the periodic structure with a point charge sources at each point yn = y + 2πRn, n =
0,±1,±2, ...

∆φ = e
∑
n

δD(x)δ(yn), φ(D, r, y) =
∑
n

φ(D, r, yn),

V (D, r, y) = −α(D + 1)
∞∑

n=−∞

(r2 + (2πRn+ y)2)(1−D)/2. (2)
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When D = 3, the potential (2) can be writen in a closed form [4]

V3(r, y) = −α(4)

2Rr

sinh(r/R)

cosh(r/R)− cos(y/R)
=

{
α(4)/(2Rr), r ≫ R,

α(4)/(r2 + y2), r, y ≪ R,
(3)

where α(4)/(2R) = α(3). We have the following expansion for V3, [5]

V3(r, θ) =
∑
n≥0

Vn(r, 3) cos(nθ), Vn(r, 3) = −α(3)e−nr

r
, θ = y/R. (4)

Now we show an extension of this relation for D dimensions. For this we consider point
charge Poisson equation of a massive particle and Yukawa potential

∆V −m2V = e2δD(x). (5)

Let us test the following Yukawa potential as a solution
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The second term in the right hand side is zero in D = 3. For r >> 1/m,D ̸= 3, if we
neglect the second term, the Yukawa potential will be approximate solution. We can
extract from this calculation also the following result: the D - dimensional Yukawa
potential VD is exact solution for the following point charge problem:

∆V −m2V − m(D − 3)

r
V = e2δD(x),

VD(r) = − αD
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Having exact equation for Yukawa potentials, we may formulate and solve the problem
of point charge in D + 1 dimensional space with one compact dimension in the following
way (

∆V − n2m2V − nm(D − 3)

r
V
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)
V (x) = e2δD+1(x), xD+1 = y = Rθ, my = θ,
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∑
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+
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=
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=
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,

Vn = V0e
−nmr, V1 = V0e

−mr, m = 1/R, V0 = −αDr
2−D. (8)

Note that in the repulsive case we have also the following confining potential

V (r) =
αD

rD−2
emr = V0e

mr =
αDm

D−2

xD−2
ex = αx2−Dex, x = mr. (9)

Now we consider nonlinear point charge problem in extended quantum me-
chanics. In the extended quantum mechanics [6] the point charge problem is

iVt −∆V +
1

2
V 2 = −e2δD(x), (10)

which is reduced to the nonlinear Poisson equation in the static case

∆V − gV 2 = e2δD(x), (11)

where we introduce new coupling constant g. When g = 0, we have ordinary point charge
problem with the solution V = Vc ∼ r2−D. In the sourceless case, e = 0, we have the
solution Vn = 2(4−D)/gr−2. If we take V = Vc + Vn + U, for U, we find

∆U − 2g(Vc + Vn)U = g(Vc + Vn)
2. (12)

In the case of three dimensionD = 3, on the small scales dominates the nonlinear repulsive
solution V = 2/gr−2, g > 0. For large scales dominates the Coulomb attractive solution
V = −α/r.

In [7] by proper account of the compact nature of SU(3) gauge group that gives rise
to the periodic θ-vacuum of the theory, the gluon propagator was modified as

G(p) = (p2 + χ/p2)−1 =
p2

p4 + χ
=

1

2
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√
χ
+

1
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)
, (13)

which gives the potential

V (r) = −α coshµr cosµr
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√
2, (14)
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where χ is the Yang-Mills topological susceptibility related to the η′ mass by the Witten
- Veneziano relation,

χ =
F 2
π

2Nf

(m2
η′ +m2

η − 2m2
K) ≃ (180MeV )4, µ = 4

√
χ/

√
2 = 127MeV. (15)

The topological susceptibility in this formula is the only quantity which is by definition
calculable in gluodynamics. Early papers of its calculation are [8-10] more recent [11].

The potential (14) is well motivated and confining. In the minimum of the potential
bound states “bags” have size of the order of 11 fm,

r = 7/µ = 7/0.127GeV −1 = 11fm, GeV −1 ≃ 0.2fm , (16)

and can give rise to long lived states corresponding to hadronic halos or galactic (in case
of gravitational) halos.
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