Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 34, 2020

RENORMDYNAMICS OF SPACE DIMENSION AND QUARKONIUM POTENTIALS

Nugzar Makhaldiani

Abstract. Scale dependent space dimension models for quarkonium are considered. Confining potential including topological fluctuations of the vacuum constructed.

Keywords and phrases: Quarkonium potentials.

AMS subject classification (2010): 81T17, 81T13, 81Q05, 81T15, 81T16, 81T17.

Quarkonium spectroscopy indicates that between valence quarks inside hadrons, the potential on small scales has D = 3 Coulomb form and at hadronic scales has D = 1 Coulomb one. We may combine this two types of behavior and form an effective potential in which at small scales dominates the D = 3 component and at hadronic scale the D = 1 component: the Coulomb-plus-linear potential (the "Cornell potential" [1]),

$$V(r) = -\frac{k}{r} + \frac{r}{a^2} = \mu \left(x - \frac{k}{x} \right), \ \mu = 1/a = 0.427 \, GeV, \ x = \mu r, \tag{1}$$

where $k = \frac{4}{3}\alpha_s = 0.52 = x_0^2$, $x_0 = 0.72$ and $a = 2.34 \, GeV^{-1}$ were chosen to fit the quarkonium spectra.

An important step in the solution of a theoretical problem is to find a good initial approximation in the corresponding mathematical model. Then by small deformations and a few terms in perturbation expansion we describe a physical phenomenon. When a deformation parameter (e.g. coupling constant) value increases, in some region the initial approximation might change into a new form. In the case of QCD, the coupling constant increases with increasing distance between quarks, and in the intermediate region (~ 0.5 fm) the three dimensional hadronic space becomes a fractal - a space with intermediate dimension. At the hadronic scale (~ 1 fm) we again have a nice classical picture (one dimensional space) and already one gluon exchange between valence quarks gives a confining potential. In the paper [2] we extend investigations started in [3] and construct such potentials and effective dimensions as functions of r.

Let us take one of the dimensions y as a circle with radius R. This corresponds to the periodic structure with a point charge sources at each point $y_n = y + 2\pi Rn, n = 0, \pm 1, \pm 2, \dots$

$$\Delta \varphi = e \sum_{n} \delta^{D}(x) \delta(y_{n}), \varphi(D, r, y) = \sum_{n} \varphi(D, r, y_{n}),$$
$$V(D, r, y) = -\alpha (D+1) \sum_{n=-\infty}^{\infty} (r^{2} + (2\pi Rn + y)^{2})^{(1-D)/2}.$$
(2)

When D = 3, the potential (2) can be written in a closed form [4]

$$V_3(r,y) = -\frac{\alpha(4)}{2Rr} \frac{\sinh(r/R)}{\cosh(r/R) - \cos(y/R)} = \begin{cases} \alpha(4)/(2Rr), & r \gg R, \\ \alpha(4)/(r^2 + y^2), & r, y \ll R, \end{cases}$$
(3)

where $\alpha(4)/(2R) = \alpha(3)$. We have the following expansion for V_3 , [5]

$$V_3(r,\theta) = \sum_{n \ge 0} V_n(r,3) \cos(n\theta), \ V_n(r,3) = -\frac{\alpha(3)e^{-nr}}{r}, \ \theta = y/R.$$
(4)

Now we show an extension of this relation for D dimensions. For this we consider **point** charge Poisson equation of a massive particle and Yukawa potential

$$\Delta V - m^2 V = e^2 \delta^D(x). \tag{5}$$

Let us test the following Yukawa potential as a solution

$$V(r) = -\frac{\alpha_D}{r^{D-2}}e^{-mr} = V_0 e^{-mr}, \ \Delta V_0 = e^2 \delta^D(x), \ \Delta = \frac{d^2}{d^2r} + \frac{D-1}{r}\frac{d}{dr},$$

$$\Delta V - m^2 V = e^{-mr}\frac{d^2}{dr^2}V_0 + 2(-\frac{D-2}{r})(-m)V + m^2 V$$

$$+e^{-mr}\frac{D-1}{r}\frac{d}{dr}V_0 + \frac{D-1}{r}(-m)V - m^2 V$$

$$= e^{-mr}\Delta V_0 + m\frac{(2(D-2) - (D-1))}{r}V = e^2 \delta^D(x) + \frac{m(D-3)}{r}V.$$
 (6)

The second term in the right hand side is zero in D = 3. For $r >> 1/m, D \neq 3$, if we neglect the second term, the Yukawa potential will be approximate solution. We can extract from this calculation also the following result: the D - dimensional Yukawa potential V_D is exact solution for the following point charge problem:

$$\Delta V - m^2 V - \frac{m(D-3)}{r} V = e^2 \delta^D(x),$$

$$V_D(r) = -\frac{\alpha_D}{r^{D-2}} e^{-mr} = V_0 e^{-mr}, \ \Delta V_0 = e^2 \delta^D(x), \ \Delta = \frac{d^2}{d^2 r} + \frac{D-1}{r} \frac{d}{dr}.$$
 (7)

Having exact equation for Yukawa potentials, we may formulate and solve the problem of point charge in D + 1 dimensional space with one compact dimension in the following way

$$\begin{split} &\left(\Delta V - n^2 m^2 V - \frac{nm(D-3)}{r} V\right) e^{inmy} \\ &= \left(\Delta_D + \frac{(D-3)}{r} \frac{\partial}{\partial y} + \frac{\partial^2}{\partial y^2}\right) V_{m_n}(r) e^{inmy} = e^2 \delta^D(x) e^{inmy}, \\ &m = 1/R, \ n = 0, \pm 1, \pm 2, \dots, \\ &\left(\Delta_{D+1} + \frac{(D-3)}{r} \frac{\partial}{\partial x_{D+1}}\right) V(x) = e^2 \delta^{D+1}(x), \ x_{D+1} = y = R\theta, \ my = \theta, \end{split}$$

$$\begin{split} \Delta_{D+1} &+ \frac{(D-3)}{r} \frac{\partial}{\partial x_{D+1}} = \Delta_D + \left(\frac{\partial}{\partial x_{D+1}} + \frac{(D-3)}{2r}\right)^2 + \frac{(D-3)(5-D)}{4r^2}, \\ V(x) &= \sum_n V_n(r)e^{in\theta} = V_0(r)\left(1 + \sum_{n\geq 1} e^{-nmr}\cos(n\theta)\right) \\ &= V_0\left(1 + \frac{e^{-mr+i\theta}}{1 - e^{-mr+i\theta}} + \frac{e^{-mr-i\theta}}{1 - e^{-mr-i\theta}}\right) \\ &= \frac{V_0(1 - e^{-2mr})}{1 + e^{-2mr} - 2e^{-mr}\cos\theta} = \frac{V_0\sinh(mr)}{\cosh(mr) - \cos\theta}, \\ V_n &= V_0e^{-nmr}, \ V_1 = V_0e^{-mr}, \ m = 1/R, \ V_0 = -\alpha_D r^{2-D}. \end{split}$$
(8)

Note that in the repulsive case we have also the following confining potential

$$V(r) = \frac{\alpha_D}{r^{D-2}} e^{mr} = V_0 e^{mr} = \frac{\alpha_D m^{D-2}}{x^{D-2}} e^x = \alpha x^{2-D} e^x, \ x = mr.$$
(9)

Now we consider **nonlinear point charge problem in extended quantum mechanics**. In the extended quantum mechanics [6] the point charge problem is

$$iV_t - \Delta V + \frac{1}{2}V^2 = -e^2\delta^D(x),$$
 (10)

which is reduced to the nonlinear Poisson equation in the static case

$$\Delta V - gV^2 = e^2 \delta^D(x), \tag{11}$$

where we introduce new coupling constant g. When g = 0, we have ordinary point charge problem with the solution $V = V_c \sim r^{2-D}$. In the sourceless case, e = 0, we have the solution $V_n = 2(4-D)/gr^{-2}$. If we take $V = V_c + V_n + U$, for U, we find

$$\Delta U - 2g(V_c + V_n)U = g(V_c + V_n)^2.$$
(12)

In the case of three dimension D = 3, on the small scales dominates the nonlinear repulsive solution $V = 2/gr^{-2}$, g > 0. For large scales dominates the Coulomb attractive solution $V = -\alpha/r$.

In [7] by proper account of the compact nature of SU(3) gauge group that gives rise to the periodic θ -vacuum of the theory, the gluon propagator was modified as

$$G(p) = (p^2 + \chi/p^2)^{-1} = \frac{p^2}{p^4 + \chi} = \frac{1}{2} \left(\frac{1}{p^2 + i\sqrt{\chi}} + \frac{1}{p^2 - i\sqrt{\chi}} \right),$$
(13)

which gives the potential

$$V(r) = -\frac{\alpha \cosh \mu r \cos \mu r}{r} = -\frac{\mu \alpha \cosh x \cos x}{x} = \mu \alpha \left(-\frac{1}{x} + \frac{x^3}{6} + \ldots\right),$$

$$x = \mu r, \ \mu = \sqrt[4]{\chi}/\sqrt{2},$$
 (14)

where χ is the Yang-Mills topological susceptibility related to the η' mass by the Witten - Veneziano relation,

$$\chi = \frac{F_{\pi}^2}{2N_f} (m_{\eta'}^2 + m_{\eta}^2 - 2m_K^2) \simeq (180 MeV)^4, \ \mu = \sqrt[4]{\chi}/\sqrt{2} = 127 MeV.$$
(15)

The topological susceptibility in this formula is the only quantity which is by definition calculable in gluodynamics. Early papers of its calculation are [8-10] more recent [11].

The potential (14) is well motivated and confining. In the minimum of the potential bound states "bags" have size of the order of 11 fm,

$$r = 7/\mu = 7/0.127 GeV^{-1} = 11 fm, GeV^{-1} \simeq 0.2 fm,$$
 (16)

and can give rise to long lived states corresponding to hadronic halos or galactic (in case of gravitational) halos.

REFERENCES

- EICHTEN, E., GOTTFRIED, K., KINOSHITA, T., LANE, K.D., TUNG-MOW, Y. Charmonium: The Model Phys. Rev. D, 10 (1978), 30-90, Erratum: Phys. Rev., 21 (1980), 313.
- 2. BUREŠ, M., MAKHALDIANI, N. Space Dimension. Renormdynamics Particles, 3 (2020), 364-379.
- BUREŠ, M. MAKHALDIANI, N. Space dimension dynamics and modified coulomb potential of quarks

 Dubna Potentials. *Physics of Particles and Nuclei Letters*, 16 (2019), 620-624.
- BUREŠ, M., SIEGL, P. Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss law. Annals of Physics, 354 (2015), 316-327.
- 5. BUREŠ, M. Energy spectrum of the hydrogen atom in a space with one compactified extra dimension. $R^3 \times S^1$ Annals of Physics, **363** (2015), 354-363.
- MAKHALDIANI, N. New Hamiltonization of the Schrödinger Equation by Corresponding Nonlinear Equation for the Potential. JINR Communications E2-2000-179, Dubna, 2000.
- KHARZEEV, D.E., LEVIN, E.M. Color confinement and screening in the θ-vacuum. Phys. Rev. Lett., 114 (2015), 242001.
- DI VECCHIA, P., FABRICIUS, K., ROSSI, G., VENEZIANO, G. Preliminary evidence for U_A(1) breaking in QCD from lattice calculations. *Nucl. Phys. B*, **192** (1981), 392-408.
- MAKHALDIANI, N., MULLER-PREUSSKER, M. The topological susceptibility from SU(3) lattice gauge theory JETP Lett., 37 (1983), 523-526.
- FABRICIUS, K., ROSSI, G. Monte Carlo measurement of the topological susceptibility in SU(3) lattice gauge theory. *Phys. Lett. B*, **127** (1983), 229-232.
- MULLER-PREUSSKER, M. Recent results on topology on the lattice. (in memory of Pierre van Baal) HU-EP-15/03, SFB/CPP-14-112; arXiv:1503.01254.

Received 30.05.2020; revised 30.08.2020; accepted 30.09.2020.

Author(s) address(es):

Nugzar Makhaldiani Joint Institute for Nuclear Research Joliot-Curie str. 6, 141980 Dubna, Moscow region, Russia E-mail: mnv@jinr.ru