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1 Introduction. The aim of this paper is to present several results on certain
foliations in the moduli spaces of Euclidean triangles introduced in [1]. Following [1] we
consider the set X△ which is defined as the closure of the open subspace D△ of the first
octant R3

+ defined by the triangle inequalities: x < y+ z, y < x+ z, z < x+ y. The spaces
X△ andD△ are called the closed space of triangles and open space of triangles respectively.
Thus by definition each point (a, b, c) ∈ X△ corresponds to a triangle T (a, b, c) which is
defined up to congruence. Notice that some of vertices of T (a, b, c) may coincide, in which
case we speak of a degenerate triangle.

We also consider several differentiable functions onD△, defined by symmetric functions
of the sides of triangle and introduce foliations of D△ by their level surfaces. Let P be the
perimeter of T (x, y, z), S the area of triangle T (x, y, z), R the circumradius of T (x, y, z),
by r the inradius of T (x, y, z), and by E the electrostatic energy of unit charges placed at
vertices of T (x, y, z) defined as E(x, y, z) = x−1 + y−1 + z−1.

Notice that all these functions are differentiable, symmetric in x, y, z and positive on
D△. For the function f : D△ → R and c ∈ R, by fc we denote the level surface {f = c}
in D△ and call it f -level. We will deal with foliations FP , FS, FR, Fr, FE of D△ by level
surfaces of functions P, S,R, r, E. It is easy to verify that all levels of these functions in
D△ are smooth two-dimensional (2d) surfaces. For any two functions f, g we will also
consider the intersections fc ∩ gd. It can be shown that, for functions P, S,R, r, E, any
non-empty intersection of such type is either a smooth closed curve or a single point.
For area and perimeter these facts have been proven in [1]. The polynomial H(x, y, z) =
(x + y + z)(−x + y + z)(x − y + z)(x + y − z) will be called Heron polynomial. If
S = S(x, y, z) then by Heron’s formula one has 16S2 = H(x, y, z). It is easy to verify
that H(x, y, z) = −σ4

1 + 4σ2
1σ2 − 8σ1σ3, where σ1, σ2, σ3 are the elementary symmetric

functions of x, y, z.
In the sequel we establish further geometric properties of these foliations and associated

extremal problems analogous to the classical isoperimetric problem [2]. More precisely,
we fix the values of two of the aforementioned functions and search for the constrained
extrema of the third one from the same list. It should be noted that the proofs make
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essential use of representation of functions S,E,R, r,H in terms of elementary symmetric
functions of the sides, which is one of the peculiar features of our approach.

2 Geometric properties of area and Coulomb foliations. The following prop-
erty of area foliation presented in [3] is based on certain observations given in [1] without
proof.

Theorem 1. (see [3]) Area levels in D△ are smooth convex two-dimensional surfaces in
the open space of triangles D△.

A rigorous proof of this result based on the investigation of Gaussian curvature can be
found in [3]. Later on, the present author found a simpler proof, based on properties of
real plane cubic curves. We outline the new argument here since it also yields an analogous
result presented in the next section. Consider a non-empty intersection Sc ∩ Pd = {S =
c}∩ {P = d}. From Heron’s formula follows that Sc ∩Pd is a component of a plane cubic
curve. The smoothness of this curve was shown in [1]. So Sc ∩ Pd is a smooth compact
component of a plane cubic curve. It follows that any straight line in the ambient plane
intersects this set in no more than two points, which implies convexity of the closed curve
Sc∩Pd. Using the latter fact it is easy to derive convexity of the whole area level {S = c}
in D△ by a standard geometric argument.

Proposition 1. The set Sc ∩ Pd is non-empty if and only if 36c ≤ d2
√
3. If 36c = d2

√
3

this intersection consists of one point representing the class of regular triangle.

This follows from the well known fact that the regular triangle of perimeter P has the
maximal area among all triangles of the same perimeter P . Since the class of a regular
triangle is the unique critical point of perimeter on the convex surface, the following result
mentioned in [3] follows by standard arguments of Morse theory.

Theorem 2. (see [3]) The negative gradient flow of perimeter on an area level S = c
carries each point of S = c to the class of a regular triangle.

As a curious geometric corollary we obtain that any non-regular triangle can be con-
tinuously deformed to a regular triangle so that the area remains constant and perimeter
is monotonously decreasing.

Proposition 2. The domain, bounded by a non-empty set Sc∩Pd, contains the represen-
tative of a regular triangle with the side equal to d/3.

This is obvious since the bisector of the first octant intersects the P -level {P = d} at
the point (d/3, d/3, d/3).

Proposition 3. Each non-degenerate curve Sc ∩ Pd contains (representatives of) two
non-congruent isosceles triangles.
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Notice that each non-empty curve Sc ∩ Pd encircles the representative of a regular
triangle which coincides with the center of a regular triangle equal to P -level in the closed
space of triangles X△. By Theorem 1 any non-empty curve Sc ∩ Pd is convex and so the
bisector of each angle of the mentioned regular triangle intersects Sc ∩ Pd in two points
which correspond to two (non-congruent) isosceles triangles.

Our constructions yield analogous results for other aforementioned fibrations. As an
example we consider fibration FE which for brevity is called Coulomb fibration.

Proposition 4. Any non-empty and non-degenerate intersection of the form Ec ∩ Pd is
a smooth closed curve in the plane {x+ y + z = d}.

It is easy to verify that gradients of E and P are linearly independent at any point of
Ec ∩ Pd, which implies the result.

Theorem 3. Levels of Coulomb fibration in D△ are smooth convex two-dimensional sur-
faces in the open space of triangles D△.

Smoothness of Coulomb levels Ec is obvious since the gradient ∇E = (−x−2,−y−2,
−z−2) does not vanish at any point of D△. Obviously, the intersection Ec ∩ Pd is defined
by the equation x−1 + y−1 + (d− x− y)−1 = c which is equivalent to a cubic equation in
(x, y). By Proposition 4 the curve Ec ∩ Pd is the smooth compact component of a plane
cubic curve and so one can complete the proof using the same argument as in Theorem 1.
The next result is derived from Theorem 3 using the same arguments from Morse theory
as in the proof of Theorem 2.

Theorem 4. The negative gradient flow of perimeter on a Coulomb level E = c carries
each point of E = c to the class of regular triangle.

3 Symmetric coordinates in spaces of triangles. Our results can be used to
show that values of some triples of the symmetric functions considered above uniquely
determine the shape of the triangle and thus define new coordinate system in the space
of triangles. For triple (P, S,E) this was established in [3]. We extend the result given in
[3] as follows.

Theorem 5. Each of triples (P, S,E), (P,R, S), (P,R,E), (P,R, r) defines a coordinate
system in the space D△.

The proof uses the same method as in [3]. In each of four cases the formula for Heron
polynomial given in the Introduction combined with some high school geometry enables
one to obtain a system of three equations for the elementary symmetric functions σ1, σ2, σ3

of the sidelengths of the sought triangle. It turns out that each of the arising systems has
only one real solution defined up to the order of variables, which means that it uniquely
determines the class of the sought triangle in D△ and yields the result. For example, for
the triple (P,R, S) this system is:

{σ1 = P, σ3 = 4RS,−σ4
1 + 4σ2

1σ2 − 8σ1σ3 = 16S2}.
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Inserting the first two expressions in the third equation one gets a linear equation for σ2

and it becomes obvious that there is a unique triple (σ1, σ2, σ3) satisfying this system.
Application of the same argument in the remaining cases completes the proof of Theorem
5.

Our results on the area and Coulomb foliation also enable one to get information on
the image of D△ under the map defined by the new coordinates. Necessary conditions on
the value of symmetric coordinates can be obtained by solving the extremal problem for
each of the functions for fixed values of two other functions. For example, for the triple
(P,R, S) we have the following result, obtained in this way.

Proposition 5. For given P and R, the extremal values of E are attained at two isosceles
triangles with the length a of equal sides, satisfying the following equation:

a4 − 4P 2Ra+ P 2R2 = 0.

The length of base in each case is equal to a2R−1
√
4R2 − a2.

The proof is based on the following analog of Proposition 3 which can be proven, using
the method of Lagrange multipliers.

Proposition 6. For given P and R, the extrema of S are attained at two isosceles tri-
angles with circumradius R and perimeter P .

An interesting problem is to obtain precise description of the range of symmetric
coordinates for each of the four triples given in Theorem 5. Analogous constructions and
problems can be considered for n-gons with n ≥ 4. Some results in this direction based
on consideration of dual extremal problems are given in [4].
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