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Abstract. Investigation and numerical solution of the nonlinear integro-differential equation of

parabolic type is considered. Integro-differential models of this type are based on the system

of Maxwell equations and appear in various diffusion problems. Unique solvability, asymptotic

behavior of the solution of the initial-boundary value problem and convergence of the finite-

difference scheme are given.
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The nonlinear integro-differential equations describe various processes in physics, eco-
nomics, technology and so on (see, for example, [1]-[7] and references therein). The study
of qualitative and structural properties of the solutions of initial-boundary problems for
these models, construction and investigation of discrete analogues are very important.

One type of integro-differential nonlinear parabolic model has the following form

∂U

∂t
− ∂

∂x

[
A(S)

∂U

∂x

]
= F (x, t) , (1)

where

S(x, t) =

t∫
0

U2(x, τ)dτ, (2)

or

S(x, t) =

t∫
0

(
∂U(x, τ)

∂x

)2

dτ. (3)

Here A = A(S), F = F (x, t) are given functions and U = U(x, t) is an unknown.
Models of (1), (3) kind are obtained at the mathematical simulation of the diffusion

processes of electromagnetic field penetration into a substance. Based on the Maxwell
system [8] this model at first appeared in [9]. Many other processes are described by
the integro-differential system obtained in [9] (see, for example, [1], [2]). Lots of scien-
tific works are dedicated to the investigation and the numerical resolution of the initial-
boundary value problems for these types of models (see, for example, [1]-[3], [9]-[19] and
references therein). The existence, uniqueness and asymptotic behavior of the solution
for such type equations and systems are studied in the works [1]-[3], [9]-[14], [16], [17] and
in a number of other works as well (for more detail citations see, for example, [1], [2]).
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For the first time, models of (1), (2) kind are obtained in [3] as a mathematical
generalization of (1), (3) type models.

The principal characteristic peculiarity of the equations (1), (2) and (1), (3) is con-
nected with the appearance of the nonlinear time integral term in the coefficient with
derivative.

The present work is dedicated to the investigation and approximate resolution of the
initial-boundary value problem for one generalization of the models (1), (2) and (1), (3).
In the rectangle Q = (0, 1)× (0, T ] we consider the following problem:

∂U

∂t
− ∂

∂x


1 + t∫

0

(
U2 +

(
∂U

∂x

)2
)
dτ

 ∂U

∂x

 = F (x, t) ,

U(0, t) = U(1, t) = 0, U(x, 0) = U0(x),

(4)

where U0 = U0(x) is given the function.
Using one modification of compactness method, developing in [20] (see also [2], [3],

[5], [9]-[11]) the following uniqueness and existence statement takes place.

Theorem 1. If F ∈ W 1
2 (Q), F (x, 0) = 0, U0 ∈

o

W 1
2 (0, 1), then there exists a unique

solution U = U(x, t) of the problem (4) satisfying the following properties:

U ∈ L4(0, T ;
o

W 1
4 (0, 1)),

∂U

∂t
∈ L2(Q),

∂2U

∂x2
,

∂2U

∂t∂x
∈ L2(Q).

Here usual well-known spaces are used. The proof of the formulated Theorem 1 is
divided into several steps applying the Galerkin method and the method of compactness.

It is easy to deduce exponential stabilization as t → ∞ of the solution of problem (4)
in the norm of the space L2(0, 1). The analogical results for the first derivatives are true.

Theorem 2. If F (x, t) ≡ 0, U0 ∈ W 2
2 (0, 1), U0(0) = U0(1) = 0, then for the solution

U = U(x, t) of the problem (4) the following estimate is true∥∥∥∥∂U∂t
∥∥∥∥+ ∥∥∥∥∂U∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Here C denotes the positive constant independent from time variable t.
In order to describe the space-discretization for problem (4), the following grid is

introduced ω̄h = {xi = ih, i = 0, 1, ...,M}, with h = 1/M . The semi-discrete approxima-
tion at (xi, t) is designed by ui = ui(t). The exact solution of the problem (4) at (xi, t),
denoted by Ui = Ui(t), is assumed to exist and be smooth enough.

Approximating the space derivatives by a forward and backward differences:

ux,i =
ui+1 − ui

h
, ux,i =

ui − ui−1

h
,

let us correspond the following semi-discrete scheme to the problem (4):

dui

dt
−


1 + t∫

0

(u2
i + u2

x̄,i)dτ

ux̄,i


x,i

= fi, i = 1, 2, ...,M − 1,

u0 (t) = uM (t) = 0, ui (0) = U0,i, i = 0, 1, ...,M.

(5)
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The semi-discrete scheme (5) is stable with respect to the initial data and the right-
hand side in the norm

∥u∥h = (u, u)
1/2
h , (u, v)h =

M−1∑
i=1

uivih.

Theorem 3. If the problem (4) has a sufficiently smooth solution U = U(x, t), then
the solution u (t) = (u1 (t) , u2 (t) , ..., uM−1 (t)) of the semi-discrete scheme (5) tends to
U (t) = (U1 (t) , U2 (t) , ..., UM−1 (t)) as h → 0 and the following estimate is true

∥u (t)− U (t)∥h ≤ Ch.

Here C denotes the positive constant independent from spatial step h.
In order to describe the time-discretization for problem (4), let us introduce the net

ωτ = {tj = jτ, j = 0, 1, ..., J}, with τ = T/J and ωhτ = ωh × ωτ , u
j
i = u(xi, tj).

On ωhτ let us correspond to the problem (4) the following finite difference scheme:

uj+1
i − uj

i

τ
−

{(
1 + τ

j+1∑
k=1

[
(uk

i )
2 +

(
uk
x,i

)2])
uj+1
x̄,i

}
x,i

= f j+1
i ,

i = 1, 2, ...,M − 1; j = 0, 1, ..., J − 1,

uj
0 = uj

M = 0, j = 0, 1, ..., J, u0
i = U0,i, i = 0, 1, ...,M.

(6)

It is proved that system (6) is uniquely solvable and stability is also studied.

Theorem 4. If the problem (4) has a sufficiently smooth solution U = U(x, t),
then the solution uj =

(
uj
1, u

j
2, ..., u

j
M−1

)
of the difference scheme (6) tends to the U j =(

U j
1 , U

j
2 , ..., U

j
M−1

)
as τ → 0, h → 0 and the following estimate is true∥∥uj − U j

∥∥
h
≤ C(τ + h), j = 1, 2, . . . , J.

Here C is positive constant independent from time and spatial steps τ and h.
Note that for solving the difference scheme (6) Newton iterative process is used. Var-

ious numerical experiments are done which agree with theoretical research.
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