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THE BOUNDARY VALUE PROBLEMS FOR PIECEWISE-HOMOGENEOUS
VISCOELASTIC PLATE
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Abstract. A piecewise-homogeneous viscoelastic plate with a finite cut, which intersect the

interface at a rigid angle is considered. The complex potentials are represented with jumps of

stresses and displacements. The first main boundary value problem of elasticity theory, when

the crack boundary is loaded with symmetrical forces, is considered. The problem is reduced

to the system of singular integral equations with respect to the crack opening. The asymptotic

estimates are obtained.
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1 We will consider a piecewise-homogeneous viscoelastic plate (vk, Ek) with a finite
cut, that crosses the interface at right angles. The plate consists of two half-planes of
dissimilar materials

S(1) = {z| Rez > 0, z ∈/l1 = [0, b]} , S(2) = {z|Rez < 0, z ∈/l2 = (−a, 0)} , (a, b) > 0.

On the boundary of the cut the jumps of the stresses and displacement are obtained:
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At the interface of the two materials we have the continuity conditions:
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Using the known relation by a solving of the problems of linear conjugation [1] the
complex potentials are represented as follows
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where t is time, elasto-instal deformation modulus are Ek(t) = Ek = const, the lateral
contraction coefficients for elastic deformation vk(t) and creep deformation vk(t, τ) are
the some and constant: vk(t) = vk(t, τ) = const,
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Ck(t, τ) are creep measure of the materials, τ0 is material age at the time of loading.
Wk(z, t), Qk(z, t) are unknown analytic functions in the half-planes S(k) + lk respectively,
which will be defined from condition (2).

From conditions (2)–(3), using the Cauchy Theorem the known relations gives us the
system of algebraic equations, whose solutions are:

W1(z, t) = e1η̄1(−z, t) + e1Ā1(−z, t) + h1A2(z, t),

Ω1(z, t) = −e1η̄1(−z, t) +m1Ā1(−z, t) +m2A2(z, t) + h2η2(z, t),

W2(z, t) = h3A1(z, t)− e2Ā2(−z, t)− e2η̄2(−z, t),

Ω2(z, t) = h4η1(z, t)−m1A1(z, t)−m2Ā2(−z, t) + e2η̄2(−z, t),
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2 First main boundary value problem of the theory of viscoelasticity.
Now we consider the first main boundary-value problem of the theory of elasticity, when
the crack boundary is loaded with symmetrical forces, then the boundary conditions have
the form:
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where Nk(x, t) are given continuous functions, vk(x, t) are unknown functions, which de-
pict the opening of a crack at the corresponding points. By considering the equations

ak(x, t) = 2itkfk(x, t), bk(x, t) = −2itkxf
′
k(x, t), fk(x, t) = (I−L)−1

k v′k(x, t), tk =
µk

κk + 1

from (4) we have

πWk(z, t) = (−1)kektk
∫
lk

xf ′
k(x,t)dx

x+z
+ (−1)kektk

∫
lk

xfk(x,t)dx
(x+z)2

+ hkt3−k

∫
l3−k

f3−k(x,t)dx

x−z
,

πQk(z, t) = ektk
∫
lk

xf ′
k(x,t)dx

x+z
+ (−1)kmktk

∫
lk

fk(x,t)dt
x+z

+ 2(−1)kektkz
∫
lk

(xfk(x,t))
′dx

(x+z)2
(6)

−hk+2tk
∫
l3−k

xf ′
3−k(x,t)dx

x−z
+ (−1)km3−kt3−k

∫
l3−k

xf ′
3−k(x,t)dt

(x−z)2
.



36 T. Jamaspishvili, N. Shavlakadze

From (5), (6) we obtain a system of singular integral equations with fixed singularity:
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s > 0, k = 1, 2.

3 Asymptotic study. Find the behavior of solutions of system (7) in the singular
points, for this present the solution in the neighborhood of the point s = 1 as follows
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According to the well-known theorems [2], about the behavior of Cauchy type integral
in the ends of the integration line:
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Whence there follows ctgπα = 0, ctgπδ = 0 and α = β = 1
2
.

Now present the solution of system (7) in the neighborhood of the point s = 0 as
follows
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from (7) we have
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We can show that β = γ, therefore from (8) it follows that
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For satisfaction both of them must be performed the following conditions:
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