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THE SOLUTION OF SOME PROBLEMS OF THE THEORY OF
THERMOELASTICITY WITH MICROTEMPERATURES FOR A CIRCULAR RING
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Abstract. In this work we consider the two-dimensional version of statics of the linear theory of

elastic materials with inner structure whose particles, in addition to the classical displacement

and temperature fields, possess microtemperatures. Some BVPs are solved for a circular ring.
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1 Basic equations. The basic system of equations of the theory of thermoelastic-
ity with microtemperatures can be written in the form [1, 2]:

µ∆uα + (λ+ µ)∂αθ − β∂αT = 0,

k6∆wα + (k4 + k5)∂αΘ− k3∂αT − k2wα = 0,

k∆T + k1ϑ = 0,

(1)

where λ, µ, β, k, k1, ..., k6 are constitutive coefficients, uα are components of the dis-
placement vector u of the point (x1, x2), wα are components of is the microtemperature
vector w of the point (x1, x2), T (x1, x2) is the temperature measured from the constant
absolute temperature T0 (T0 > 0), θ = ∂1u1 + ∂2u2, Θ = ∂1w1 + ∂2w2, ∆ = ∂11 + ∂22 is
the tow dimensional Laplace operator.

On the plane Ox1x2 a complex variable z = x1 + ix2, where i the imaginary unit, and
the following operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2) are introduced. Then the
system consisting of the equations (1) can be written in complex form as follows

µ∆u+ + 2(λ+ µ)∂z̄θ − 2β∂z̄T = 0,

k6∆w+ + 2(k4 + k5)∂z̄Θ− 2k3∂z̄T − k2w+ = 0,

k∆T + k1ϑ = 0,

(2)

where ∆ = 4∂z∂z̄; u+ := u1 + iu2; w+ := w1 + iw2.

For the positive definiteness of the corresponding quadratic form will satisfy the con-
ditions

k4 + k5 + k6 > 0, k2 > 0, k1k3 − kk2 < 0, k > 0.
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In [3] it is shown that the general solution of system (12) is represented as follows:

2µu+ = κϕ(z)− zϕ′(z)− ψ(z)

+
µβ

λ+ 2µ

{
k2
2k3

[
φ(z) + zφ′(z)

]
− 2k1
kk∗

∂z̄χ1(z, z̄)

}
,

w+ = −φ′′(z) + ∂z̄[χ1(z, z̄) + iχ2(z, z̄)],

T =
k2
2k3

[φ′(z) + φ′(z)]− k1
2k
χ1(z, z̄),

(3)

where κ =
λ+ 3µ

λ+ µ
, φ(z), ϕ(z) and ψ(z) are the arbitrary analytic function of a complex

variable z, χ1(z, z̄) is a general solution of the following Helmholtz equation ∆χ1−k∗χ1 =

0, k∗ =
k2k − k1k3

k(k4 + k5 + k6)
> 0, χ2(z, z̄) is a general solution of the following Helmholtz

equation ∆χ2 − k̃χ2 = 0, k̃ =
k2
k6
.

2 A problem for a circular ring. In this section, we solve a concrete boundary
value problem for a concentric circular ring with radius R1 and R2 [4].

We consider the following problem

u+ =


+∞∑
−∞

A′
ne

inϑ, |z| = R1,

+∞∑
−∞

A′′
ne

inϑ, |z| = R2,
(4)

w+ =


+∞∑
−∞

B′
ne

inϑ, |z| = R1,

+∞∑
−∞

B′′
ne

inϑ, |z| = R2,
T =


+∞∑
−∞

C ′
ne

inϑ, |z| = R1,

+∞∑
−∞

C ′′
ne

inϑ, |z| = R2.
(5)

The analytic functions ϕ(z), ψ(z), φ(z) and the metaharmonic functions χ1(z, z̄),
χ2(z, z̄) are represented as a series

ϕ(z) = a ln z +
+∞∑
−∞

anz
n, ψ(z) = b+

+∞∑
−∞

bnz
n, φ′(z) = c ln z +

+∞∑
−∞

cnz
n, (6)

χγ(z, z̄) =
+∞∑
−∞

(
αγnIn

(√
k∗r

)
+ βγnKn

(√
k∗r

))
einϑ, (7)

where In(·) and Kn(·) are modified Bessel functions of order n.
In the boundary conditions (5) we substitute the corresponding expressions (6), (7)

and compare the coefficients at identical degrees. We obtain the following system of
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equations

k2
k3
c lnRγ +

k2
2k3

c0 −
k1
2k

[
α10I0(

√
k∗Rγ) + β10K0(

√
k∗Rγ)

]
= Cγ0,

− 2c

Rγ

+
√
k∗

[
α10I1(

√
k∗Rγ)− β10K1(

√
k∗Rγ)

]
= Bγ1 +Bγ1,√

k̃
[
α20I1(

√
k̃Rγ)− β20K1(

√
k̃Rγ)

]
= −i(Bγ1 −Bγ1),

(8)

k2
k3

[
Rn

γcn +R−n
γ c−n

]
− k1

2k

[
α1nIn(

√
k∗Rγ) + β1nKn(

√
k∗Rγ)

]
= Cγn,

−n
[
Rn−1

γ cn −R−n−1
γ c̄−n

]
+

√
k∗

2

[
(In−1(

√
k∗Rγ) + In+1(

√
k∗Rγ))α1n − (Kn−1(

√
k∗Rγ) +Kn+1(

√
k∗Rγ))β1n

]
−i

√
k̃

2

[
(In−1(

√
k̃Rγ)− In+1(

√
k̃Rγ)α2n)− (Kn−1(

√
k̃Rγ)−Kn+1(

√
k̃Rγ)β2n)

]
= Bγn+1 +Bγ1−n,

−n
[
Rn−1

γ cn +R−n−1
γ c̄−n

]
+

√
k∗

2

[
(In−1(

√
k∗Rγ)− In+1(

√
k∗Rγ))α1n − (Kn−1(

√
k∗Rγ)−Kn+1(

√
k∗Rγ))β1n

]
−i

√
k̃

2

[
(In−1(

√
k̃Rγ) + In+1(

√
k̃Rγ)α2n)− (Kn−1(

√
k̃Rγ) +Kn+1(

√
k̃Rγ)β2n)

]
= −Bγn+1 +Bγ1−n, γ = 1, 2.

(9)

It is possible to show that the determinant of the systems (8) and (9) are other than
zero. Equations (8), (9) uniquely determine all coefficients of decomposition of functions
φ(z), χ1(z, z̄) and χ2(z, z̄). Absolute and uniform convergence of the series obtained in
the ring (including the contours) will be provided if the functions set on the boundary
have sufficient smoothness.

In the boundary conditions (5) we substitute the corresponding expressions (6), (7):

(κa+ b̄)iϑ+ (κa− b̄) lnRγ − āe2iϑ +
+∞∑
−∞

κanRn
γe

inϑ

−
+∞∑
−∞

(
nānR

n
γe

−i(n−2)ϑ + b̄nR
n
γe

−inϑ
)
= Eiϑ+

+∞∑
−∞

Dγne
inϑ, γ = 1, 2,

(10)

where

E = − µβ

λ+ 2µ

k2
2k3

c−1,

Dγ0 = − µβ

λ+ 2µ

{
k2
2k3

[lnRγ + 1]c−1 −
k1

k
√
k∗

[I0(
√
k∗Rγ)α1−1 −K0(

√
k∗Rγ)β1−1]

}
,

Dγ1 = − µβ

λ+ 2µ

k2
2k3

[cRγ(2 lnRγ − 1) + 2c0Rγ]

+
µβ

λ+ 2µ

k1

k
√
k∗

[
I1(

√
k∗Rγ)α10 −K1(

√
k∗Rγ)β10

]
,
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Dγn = − µβ

λ+ 2µ

k2
2k3

[cn−1

n
Rn

γ + c̄1−nR
−n
γ

]
+

µβ

λ+ 2µ

k1

k
√
k∗

[
In(

√
k∗Rγ)α1n−1 −Kn(

√
k∗Rγ)β1n−1

]
.

The requirement for uniqueness of displacements have the following form

κa+ b̄ = E. (11)

Comparison of terms involving einϑ gives

κ lnRγa− 2R2
γ ā2 + κa0 − b̄0 = Dγ0,

−a+ κR2
γa2 −R−2

γ b̄−2 = Dγ2,

κRn
γan + (n− 2)R−n+2

γ ā−n+2 −R−n
γ b̄−n = Dγn, γ = 1, 2.

(12)

Equations (11), (12) uniquely determine all coefficients of decomposition of functions ϕ(z)
and ψ(z).
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1. Ieşan, D., Quintanilla, R. On a theory of thermoelasticity with microtemperatures. J. Thermal
Stresses, 23 (2000), 199–215.

2. Scalia, A., Svanadze, M., Tracina, R. Basic theorems in the equilibrium theory of thermoelas-
ticity with microtemperatures. J. Thermal Stresses, 33 (2010), 721–753.

3. Janjgava, R., Narmania, M. The solution of some two dimensional problems of thermoelasticity
taking into account the microtemperature. J. Thermal Stresses, 39, 1 (2016), 57–64.

4. Tsagareli, I., Svanadze, M. The solution of the stress problem of the theory of thermoelasticity
with microtemperatures for a circular ring. Seminar of I. Vekua Institute of Applied Mathematics,
REPORTS, 38 (2012), 62–68.

Received 30.05.2020; revised 22.07.2020; accepted 17.09.2020.

Author(s) address(es):

Bakur Gulua
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University
University str. 2, 0186 Tbilisi, Georgia

Sokhumi State University
Politkovskaya str. 61, 0186 Tbilisi, Georgia
E-mail: bak.gulua@gmail.com

Tengiz Meunargia
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University
University str. 2, 0186 Tbilisi, Georgia
E-mail: tengizmeunargia37@gmail.com


