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STUDY OF THE BASIC BOUNDARY VALUE PROBLEMS OF STATICS OF THE
THEORY OF THERMOELASTICITY WITH MICROTEMPERATURES AND

MICROROTATION BY THE POTENTIAL METHOD

Salome Bitsadze

Abstract. The paper deals with the basic boundary value problems of statics for thermoelastic

isotropic microstretch materials with microtemperatures and microrotation. For the homoge-

neous system of partial differential equations of statics, the fundamental matrix is constructed

explicitly in terms of elementary functions. By means of the fundamental matrix is constructed

the corresponding volume and layer potentials, and their mapping properties are investigated.

The basic Dirichlet and Neumann type boundary value problems are reduced to the correspond-

ing system of singular integral equations, and the existence theorems of solutions are proved.
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1 Introduction. The mathematical model of a linear theory of thermodynamics
for microstretch elastic solids with microtemperatures, using the results established by
Grot [1] have been proposed by Ieşan [2]. This theory introduces three extra degrees
of freedom over the theory presented in [3]. An interesting of microrotation vector with
the microtemperatures even for isotropic bodies. This effect is different from the elastical
theory of Cosserat thermoelasticity for isotropic bodies [4], where the microrotation vector
is independent of the thermal field. The basic boundary value problems for the static
equations of the theory of thermoelasticity for isotropic materials with microstructure
and microtemperature are investigated in [5].

2 Basic equations and boundary value problems. The homogeneous system
of static equation of the thermoelasticity theory of microstrech materials with microtem-
peratures and microdilatation in the case of isotropic bodies read as [1]

(µ+ κ)∆u+ (λ+ µ) grad div u− κ rot ω + µ0 grad v − β0 grad ϑ = 0, (1)

κ6∆w − κ2w + (κ4 + κ5) grad div w − κ3 grad ϑ = 0, (2)

γ∆ω − 2κω + κR(∂)u− µ1R(∂)w = 0, (3)

a0∆v − ηv − µ0 div u− µ2 div w + β1ϑ = 0, (4)

κ7∆ϑ+ κ1 div w = 0, (5)

where γ, λ, µ, κ, η, β0, β1, µ0, µ1, µ2, a0, κj, j = 1, 2, ..., 7 are the real constants char-
acterizing the mechanical and thermal properties of the body, ∆ is the Laplace operator,
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u = (u1, u2) is the displacement vector, w = (w1, w2) is the microtemperature vector,
ω is the microrotation function, v is the microdilatation function, ϑ is the temperature,
measured from a fixed absolute temperature T0 (T0 > 0), the superscript (·)⊤ denotes
transposition operation,

R(∂)u =
∂u2
∂x1

− ∂u1
∂x2

, R(∂)w =
∂w2

∂x1
− ∂w1

∂x2
.

Let Ω+ ⊂ R2 be a bounded domain with boundary ∂Ω. We denote Ω− = R2 \ Ω+
.

Problem. Find in the domain Ω+ (Ω−) such a regular vector U = (u,w, ω, v, ϑ)⊤ ⊂
C2(Ω±)∩C1(Ω

±
) that satisfies in the domain the system of differential equations (1)-(5),

and on the boundary ∂Ω, satisfies one of the following boundary conditions
(I)± (The Dirichlet problem)

{U(z)}± = f(z), z ∈ ∂Ω, (6)

(II)± (The Neumann problem)

{P (∂, n)U(z)}± = f(z), z ∈ ∂Ω, (7)

where f = (f (1), f (2), f3, f4, f5)
⊤, f (j) = (f

(j)
1 , f j

2 )
⊤, j = 1, 2, are given vector-functions

and fl, l = 3, 4, 5 are given functions on the boundary ∂Ω, n(z) is the outward normal
unit vector passing at a point z ∈ ∂Ω with respect to the domain Ω+, P (∂, n)U is the
generalized thermo-stress vector.

In the case of the exterior problems for the domain Ω− the vector U = (u,w, ω, v, ϑ)⊤

should satisfy the following decay conditions at infiniti

U(x) = O(|x|−1),
∂

∂xk
U(x) = o(|x|−1), k = 1, 2.

3 Existence results for boundary value problems. Let us denote by L(∂) the
matrix differential operator of order 7× 7, generated by the left hand side expressions in
system (1)-(5). Assume that

L∗(∂)U := L⊤(−∂)U.
Let us introduce the generalized single and double layer potentials, and the Newton type
volume potential

V (φ)(x) =

∫
∂Ω

Γ(x− y)φ(y) dyS, x ∈ R2 \ ∂Ω, (8)

W (φ)(x) =

∫
∂Ω

[
P∗(∂y, n(y))Γ

⊤(x− y)
]⊤
φ(y) dyS, x ∈ R2 \ ∂Ω, (9)

NΩ±(ψ)(x) =

∫
Ω±

Γ(x− y)ψ(y) dy, x ∈ R2, (10)
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where Γ(·) is the fundamental matrix, φ = (φ1, φ2, · · · , φ7)
⊤ is a density vector-function

defined on ∂Ω, while a density vector-function ψ = (ψ1, ψ2, · · · , ψ7)
⊤ is defined on Ω±,

P ∗(∂y, n(y)) is the boundary differential operator, corresponding to L∗(∂).

Theorem 1. For any g ∈ C 0, δ′(∂Ω), h ∈ C 1, δ′(∂Ω), and any x ∈ ∂Ω

{V (g)(x) }± = V (g)(x) = H g(x),

{P (∂x, n(x))V (g)(x) }± =
[
∓ 2−1I7 +K

]
g(x),

{W (g)(x) }± =
[
± 2−1I7 +N

]
g(x),

{P (∂x, n(x))W (h)(x) }+ = {P (∂x, n(x))W (h)(x) }− = Lh(x),

where

H g(x) :=

∫
∂Ω

Γ(x− y) g(y) dyS ,

K g(x) :=

∫
∂Ω

[
P (∂x, n(x)) Γ(x− y)

]
g(y) dyS ,

N g(x) :=

∫
∂Ω

[
P ∗(∂y, n(y)) Γ

⊤(x− y)
]⊤
g(y) dyS ,

Lh(x) := lim
Ω±∋z→x∈∂Ω

P (∂z, n(x))

∫
∂Ω

[
P ∗(∂y, n(y)) Γ

⊤(z − y)
]⊤
h(y) dyS .

Theorem 2. Let ∂Ω ∈ C2,ν and f ∈ C1,τ (∂Ω) with 0 < τ < ν ≤ 1. Then the boundary
value problem (I)+is uniquely solvable in the space C1,τ (Ω+) and the solution is represented
by the double layer potential W (h) defined by (9), where density h ∈ C1,τ (∂Ω) is a unique
solution of the integral equation

[
2−1I7 +N

]
h = f.

Theorem 3. Let ∂Ω ∈ C2,ν and f ∈ C1,τ (∂Ω) with 0 < τ < ν ≤ 1. Then the boundary

value problem (I)− is uniquely solvable in the space C1,τ (Ω
−
) and the solution is repre-

sented by linear combination of the double and single layer potentials.

Theorem 4. Let ∂Ω ∈ C1,ν and f ∈ C0,τ (∂Ω) with 0 < τ < ν ≤ 1. The null space of
the singular integral operator −2−1I7 + K : C0,τ (∂Ω) → C0,τ (∂Ω) corresponding to the
homogeneous interior Neumann boundary value problem (II)+0 have the dimension equal
to 5. Moreover, the vectors

φ(1)(x) =(−x2, x1, 0, 0, 0, 0, 0)⊤,
φ(2)(x) =(1, 0, 0, 0, 0, 0, 0)⊤,

φ(3)(x) =(0, 1, 0, 0, 0, 0, 0)⊤,

φ(4)(x) =(0, 0, 0, 0, 1, 0, 0)⊤,

φ(5)(x) =(0, 0, 0, 0, 0, 0, 1)⊤,
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restricted into the surface ∂Ω represent a basis φ(k)(x), k = 1, 2, ·, 5 of the null space of
the adjoint singular integral operator −2−1I7 +N ∗.

Theorem 5. Let ∂Ω ∈ C1,ν and f ∈ C0,τ (∂Ω) with 0 < τ < ν ≤ 1. Then the bound-
ary value problem (II)− is uniquely solvable in the space C1,τ (Ω−) and the solution is
represented by the single layer potential.
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