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Abstract. Existence of Bayesian consistent criteria for hypotheses testing is proved.
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1 Introduction. Let X be a separable Hilbert space, let B(X) be a Borel σ-
algebra on it, and let {µa, a ∈ M} be a family of Gaussian measures on B(X) with
different mean values a ∈M and an identical correlation operatorB. The set of hypotheses
is the set of means a ∈M. The set M is a convex compact in X, and a priori measure is
positive on every open set.

2 Content. Suppose that on M it is possible to introduce the norm

||a||V =
√
(V −1a, a), (1)

where V is some completely continuous symmetric positive operator. Let on a σ-algebra,
generated by Borel sets ofM with respect to the norm ||· ||V , given a priori measure θ(da).

We will consider the Bayesian criteria for the unknown mean a0 ∈M :

a∗n(x) =

∫
a exp{(Cna, x)− 1

2
(Cna, a)}θ(da)∫

exp{(Cna, x)− 1
2
(Cna, a)}θ(da)

, (2)

where x is an observation, and Cn is some sequence of operators.

Theorem 1. Let the following conditions be fulfilled:
1) M is compact in metric (1);
2) θ({a : ||a− a0||V ≤ ϵ}) > 0, ϵ > 0 and besides, there is a non-negative operator V1

such that ∫
exp{(V1a, a)}θ(da) <∞

and
(CnBCnb, b) ≤ (V1b, b), b ∈M ;

3) there is a limit lim
n→∞

(Cna, x) under the measure µ0;

4) lim
n→∞

inf
||a||V >ϵ

(Cna, a) = +∞;
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5) for all ϵ > 0 there are α > 1 and ϵ1 < ϵ such that

lim
n→∞

[ inf
||ω||V >ϵ

(Cnω, ω) sup
||ω||V ≤ϵ1

(Cnω, ω)] > α.

Then
µa0

(
{ω : ||a∗n − a0||V > ϵ}

)
→ 0 as n→ ∞.

Proof. We introduce the following notation ω = a − a0, x = y + a0, ω
∗
n = a∗n − a0. It is

clear that

ω∗
n(x) =

∫
ωϱn(ω)θ(da)∫
ϱn(ω)θ(da)

, (3)

where

ϱn(ω) = exp{(Cnω, x)−
1

2
(Cnω, ω)}.

Therefore,

||ω∗
n||V =

∫
||ω||V ≤ϵ

||ω||V ϱn(ω)θ(da)∫
ϱn(ω)θ(da)

+

∫
||ω||V >ϵ

||ω||V ϱn(ω)θ(da)∫
ϱn(ω)θ(da)

. (4)

Assuming M̃ = {ω : a ∈M}, c = sup
ω∈M̃

||ω||V and

Hn(x) =

∫
||ω||V >ϵ

ϱn(ω)θ(da)∫
ϱn(ω)θ(da)

.

From (4) we get
||ω∗

n||V ≤ ϵ+ cHn(x). (5)

To complete the proof, it suffices to prove that the multiplier Hn(x) in (5) tends to
zero with respect to the measure µa0 as n→ ∞. According to (5) we estimate the Hn(x)
as follows:

Hn(x) ≤

∫
||ω||V >ϵ

exp{(Cnω, x)− 1
2

inf
||ω||V >ϵ

(Cnω, ω)}θ(da)∫
||ω||V ≤ϵ1

exp{(Cnω, x)− 1
2

sup
||ω||V ≤ϵ1

(Cnω, ω)}θ(da)

≤ exp{−1

2

α− 1

α
inf

||ω||V >ϵ
(Cnω, ω)}gn(x), (6)

where

gn(x) =

∫
||ω||V >ϵ

exp{(Cnω, x)}θ(da)∫
||ω||V ≤ϵ1

exp{(Cnω, x)}θ(da)
.

Further, using the Fatou theorem and condition 3), we have

lim
n→∞

∫
||ω||V ≤ϵ1

exp{(Cnω, x)}θ(da) ≥
∫
||ω||V ≤ϵ1

exp{ lim
n→∞

(Cnω, x)}θ(da).
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Therefore, to complete the proof, it suffices to verify that the function∫
||ω||V >ϵ

exp{(Cnω, x)}θ(da)

is bounded with respect to the measure µa0 . For this we prove the boundedness of

lim
n→∞

Eµa0

∫
exp{(Cnω, x)}θ(da).

Indeed, changing the order of integration and taking into account condition 2), we obtain

lim
n→∞

∫ ∫
exp{(Cnω, x)}µa0(dx)θ(da) <∞.

Thus, gn(x) is bounded with respect to the measure µa0 . Consequently, from relation
(6), by virtue of condition 4), it follows that Hn(x) converges to zero with respect to the
measure µ0 as n→ ∞.

Let e1, e2, . . . , en, . . . be eigenvectors and λ1, λ2, . . . , λn, . . . be corresponding
eigenvalues of the operator B. The following theorem is true.

Theorem 2. Let the following conditions be fulfilled:
1) there exists a sequence of positive numbers γn → ∞ as n → ∞ such that for each

a, a0 ∈M and ∀ϵ > 0

a)
∞∑
k=1

(a− a0, ek)
2

λkγk
<∞, inf

||a−a0||V >ϵ
ψn(a− a0) = +∞,

where

ψn(x) =
1

√
γn

∞∑
k=1

(x, ek)
2

λk
;

b) there are α > 1 and δ < ϵ such that for sufficiently large n

inf
||a−a0||V >ϵ

ψn(a− a0) ≥ α sup
||a−a0||V ≤δ

ψn(a− a0);

2) M is compact in metric ||· ||V ;
3) ∀ϵ > 0 the equality ν({a : ||a − a0||V ≤ ϵ}) > 0 is true, where ν(· ) is a priori

measure on the σ-algebra, generated by Borel sets in M .
Then one can indicate a sub-sequence ni for which

a∗ni
(x) =

∫
ae−φni (a−a0)ν(da)∫
e−φni (a−a0)ν(da)

will be a consistent criterion for mean a0 ∈M.
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