Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 33, 2019

BAYSIAN CONSISTENT CRITERIA FOR HYPOTHESES TESTING

Zurab Zerakidze Malkhaz Mumladze

Abstract. Existence of Bayesian consistent criteria for hypotheses testing is proved.

Keywords and phrases: Gaussian measures, consistent criterion, Bayesian consistent criterion.

AMS subject classification (2010): 62H05, 62H12.

Introduction. Let X be a separable Hilbert space, let B(X) be a Borel σ -1 algebra on it, and let $\{\mu_a, a \in M\}$ be a family of Gaussian measures on B(X) with different mean values $a \in M$ and an identical correlation operator B. The set of hypotheses is the set of means $a \in M$. The set M is a convex compact in X, and a priori measure is positive on every open set.

2 **Content.** Suppose that on M it is possible to introduce the norm

$$||a||_{V} = \sqrt{(V^{-1}a, a)},\tag{1}$$

where V is some completely continuous symmetric positive operator. Let on a σ -algebra, generated by Borel sets of M with respect to the norm $\|\cdot\|_V$, given a priori measure $\theta(da)$.

We will consider the Bayesian criteria for the unknown mean $a_0 \in M$:

$$a_n^*(x) = \frac{\int a \exp\{(C_n a, x) - \frac{1}{2}(C_n a, a)\}\theta(da)}{\int \exp\{(C_n a, x) - \frac{1}{2}(C_n a, a)\}\theta(da)},$$
(2)

where x is an observation, and C_n is some sequence of operators.

Theorem 1. Let the following conditions be fulfilled:

1) M is compact in metric (1);

2) $\theta(\{a: ||a-a_0||_V \leq \epsilon\}) > 0, \epsilon > 0$ and besides, there is a non-negative operator V_1 such that

$$\int \exp\{(V_1a, a)\}\theta(da) < \infty$$

and

$$(C_n B C_n b, b) \le (V_1 b, b), \ b \in M;$$

3) there is a limit $\lim_{n \to \infty} (C_n a, x)$ under the measure μ_0 ; 4) $\lim_{n \to \infty} \inf_{||a||_V > \epsilon} (C_n a, a) = +\infty$;

5) for all $\epsilon > 0$ there are $\alpha > 1$ and $\epsilon_1 < \epsilon$ such that

$$\lim_{n \to \infty} [\inf_{\|\omega\|_V > \epsilon} (C_n \omega, \omega) \sup_{\|\omega\|_V \le \epsilon_1} (C_n \omega, \omega)] > \alpha.$$

Then

$$\mu_{a_0}\big(\{\omega: ||a_n^* - a_0||_V > \epsilon\}\big) \to 0 \ as \ n \to \infty.$$

Proof. We introduce the following notation $\omega = a - a_0$, $x = y + a_0$, $\omega_n^* = a_n^* - a_0$. It is clear that

$$\omega_n^*(x) = \frac{\int \omega \varrho_n(\omega) \theta(da)}{\int \varrho_n(\omega) \theta(da)},\tag{3}$$

where

$$\varrho_n(\omega) = \exp\{(C_n\omega, x) - \frac{1}{2}(C_n\omega, \omega)\}.$$

Therefore,

$$||\omega_n^*||_V = \frac{\int_{||\omega||_V \le \epsilon} ||\omega||_V \varrho_n(\omega)\theta(da)}{\int \varrho_n(\omega)\theta(da)} + \frac{\int_{||\omega||_V > \epsilon} ||\omega||_V \varrho_n(\omega)\theta(da)}{\int \varrho_n(\omega)\theta(da)}.$$
(4)

Assuming $\widetilde{M} = \{ \omega : a \in M \}, c = \sup_{\omega \in \widetilde{M}} ||\omega||_V$ and

$$H_n(x) = \frac{\int_{||\omega||_V > \epsilon} \varrho_n(\omega)\theta(da)}{\int \varrho_n(\omega)\theta(da)}.$$

From (4) we get

$$||\omega_n^*||_V \le \epsilon + cH_n(x). \tag{5}$$

To complete the proof, it suffices to prove that the multiplier $H_n(x)$ in (5) tends to zero with respect to the measure μ_{a_0} as $n \to \infty$. According to (5) we estimate the $H_n(x)$ as follows:

$$H_{n}(x) \leq \frac{\int_{||\omega||_{V} > \epsilon} \exp\{(C_{n}\omega, x) - \frac{1}{2} \inf_{||\omega||_{V} > \epsilon} (C_{n}\omega, \omega)\}\theta(da)}{\int_{||\omega||_{V} \leq \epsilon_{1}} \exp\{(C_{n}\omega, x) - \frac{1}{2} \sup_{||\omega||_{V} \leq \epsilon_{1}} (C_{n}\omega, \omega)\}\theta(da)}$$
$$\leq \exp\{-\frac{1}{2} \frac{\alpha - 1}{\alpha} \inf_{||\omega||_{V} > \epsilon} (C_{n}\omega, \omega)\}g_{n}(x), \tag{6}$$

where

$$g_n(x) = \frac{\int_{||\omega||_V > \epsilon} \exp\{(C_n \omega, x)\}\theta(da)}{\int_{||\omega||_V \le \epsilon_1} \exp\{(C_n \omega, x)\}\theta(da)}$$

Further, using the Fatou theorem and condition 3), we have

$$\lim_{n \to \infty} \int_{||\omega||_V \le \epsilon_1} \exp\{(C_n \omega, x)\} \theta(da) \ge \int_{||\omega||_V \le \epsilon_1} \exp\{\lim_{n \to \infty} (C_n \omega, x)\} \theta(da).$$

Therefore, to complete the proof, it suffices to verify that the function

$$\int_{||\omega||_V > \epsilon} \exp\{(C_n \omega, x)\}\theta(da)$$

is bounded with respect to the measure μ_{a_0} . For this we prove the boundedness of

$$\lim_{n \to \infty} E_{\mu_{a_0}} \int \exp\{(C_n \omega, x)\} \theta(da).$$

Indeed, changing the order of integration and taking into account condition 2), we obtain

$$\overline{\lim_{n \to \infty}} \int \int \exp\{(C_n \omega, x)\} \mu_{a_0}(dx) \theta(da) < \infty.$$

Thus, $g_n(x)$ is bounded with respect to the measure μ_{a_0} . Consequently, from relation (6), by virtue of condition 4), it follows that $H_n(x)$ converges to zero with respect to the measure μ_0 as $n \to \infty$.

Let $e_1, e_2, \ldots, e_n, \ldots$ be eigenvectors and $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots$ be corresponding eigenvalues of the operator B. The following theorem is true.

Theorem 2. Let the following conditions be fulfilled:

1) there exists a sequence of positive numbers $\gamma_n \to \infty$ as $n \to \infty$ such that for each $a, a_0 \in M$ and $\forall \epsilon > 0$

a)
$$\sum_{k=1}^{\infty} \frac{(a-a_0, e_k)^2}{\lambda_k \gamma_k} < \infty$$
, $\inf_{||a-a_0||_V > \epsilon} \psi_n(a-a_0) = +\infty$,

where

$$\psi_n(x) = \frac{1}{\sqrt{\gamma_n}} \sum_{k=1}^{\infty} \frac{(x, e_k)^2}{\lambda_k};$$

b) there are $\alpha > 1$ and $\delta < \epsilon$ such that for sufficiently large n

$$\inf_{||a-a_0||_V > \epsilon} \psi_n(a-a_0) \ge \alpha \sup_{||a-a_0||_V \le \delta} \psi_n(a-a_0);$$

2) M is compact in metric $||\cdot||_V$;

3) $\forall \epsilon > 0$ the equality $\nu(\{a : ||a - a_0||_V \leq \epsilon\}) > 0$ is true, where $\nu(\cdot)$ is a priori measure on the σ -algebra, generated by Borel sets in M.

Then one can indicate a sub-sequence n_i for which

$$a_{n_i}^*(x) = \frac{\int a e^{-\varphi_{n_i}(a-a_0)} \nu(da)}{\int e^{-\varphi_{n_i}(a-a_0)} \nu(da)}$$

will be a consistent criterion for mean $a_0 \in M$.

REFERENCES

- 1. IBRAMKHALILOV, I., SKOROKHOD, A. Consistent Estimates of Parameters of Random Processes (Russian). *Naukova Dumka*, Kiev, 1980.
- 2. ZERAKIDZE, Z., MUMLADZE, M. Statistical Structures and Consistent Criteries for Checking Hypotheses. *Deutschland-Lambert Academic Publishing*, Saarbrucken, 2015.
- ZERAKIDZE, Z., PURTUKHIA, O. The consistent criteria for hypotheses testing. Ukrainian Mathematical Journal, 71, 4 (2019), 486-501.

Received 30.05.2019; revised 26.11.2019; accepted 30.12.2019.

Author(s) address(es):

Zurab Zerakidze, Malkhaz Mumladze Gori State University Chavchavadze Ave. 53, 1400 Gori, Georgia E-mail: zura.zerakidze@mail.ru, malkaz.mumladze@gmail.com