Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 33, 2019

BAYESIAN CONSISTENT CRITERIA FOR THE WIENER PROCESS

Zurab Zerakidze Lela Aleksidze Laura Eliauri

Abstract. Existence of Bayesian consistent criteria for the Wiener process is investigated.

Keywords and phrases: Wiener process, consistent criterion, Bayesian consistent criterion.

AMS subject classification (2010): 62H05, 62H12.

1 Introduction. We observe the process $x(t, \omega) = \varphi(t) + W(t, \omega)$, where W(t) is the standard Wiener process and $\varphi \in M$ (M is some set from $C([0, \infty))$). The set of hypotheses is unknown mean values $\varphi(t)$ of the observed process. The purpose of this article is to indicate the conditions under which for $\varphi \in M$ there exists a consistent criteria for hypothesis testing.

2 Content. Let μ_{ψ} be a measure on $C([0, \infty))$, corresponding to the process $\varphi(t) + W(t)$, μ_{φ}^{T} is a measure on C([0, T]), corresponding to x(t), $t \in [0, T]$. Suppose that for all T > 0 the measure μ_{φ}^{T} is absolute continuous with respect to the measure μ_{0}^{T} , corresponding to W(t), $t \in [0, T]$, that is, the following conditions are true:

1) for $\varphi \in M$, $\varphi(0) = 0$, there exists $\varphi'(t)$ and $\forall T > 0$ if

$$\int_0^T [\varphi'(t)]^2 dt < \infty, \text{ then } \mu_\varphi^T \ll \mu_0^T, \tag{1}$$

at that

$$\frac{\mu_{\varphi}^{T}}{\mu_{0}^{T}}[x(\cdot)] = \exp\left\{\int_{0}^{T} \varphi'(t)dt - \frac{1}{2}\int_{0}^{T} [\varphi'(t)]^{2}dt\right\}.$$
(2)

If (1) is satisfied, then for the orthogonality of the measures μ_{φ_1} and μ_{φ_1} it is necessary and sufficient that

$$\int_{0}^{T} [\varphi_{1}^{'}(t) - \varphi_{2}^{'}(t)]^{2} dt = 0.$$
(3)

Next, suppose the following condition holds:

2) there is a differentiable function g(t), such that $g(t) \to 0$ as $t \to \infty$ and

$$\int_0^\infty g^2(t) [\varphi'(t)]^2 dt < \infty \tag{4}$$

uniformly with respect to φ , and for $\varphi_1 \neq \varphi_2, \varphi_1, \varphi_2 \in M$:

$$\int_0^\infty g^2(t) [\varphi_1'(t) - \varphi_2'(t)]^2 dt = +\infty.$$

Consider the quadratic functional

$$\Phi(t,\varphi,x) = -2\int_0^T \varphi'(t)g(t)dx(t) + \int_0^T [\varphi'(t)]^2 g(t)dt.$$
 (5)

3) there exists a derivative $\varphi''(t)$, which for all T > 0 belongs to a compact set in $L_2([0,T])$.

Rewriting the stochastic integral in (5) as an ordinary integral

$$\int_{0}^{T} \varphi'(t)g(t)dx(t) = x(T)\varphi'(T)g(T) - \int_{0}^{T} x(t)[\varphi'(t)g(t)]'dt$$

we see that there is such a function $\varphi_T(t, x) = \varphi_T^*(t) \in M$, for which the functional from (5) takes the minimal value on M if $\varphi(t) = \varphi_T^*(t)$.

Theorem 1. Let conditions 1) - 3) be fulfilled and moreover: 4) there is an increasing function $\theta(t)$ such that

$$P\left\{\lim_{t \to \infty} \frac{W(t)}{\theta(t)} = 0\right\} = 1,$$
$$\sup_{\varphi \in M} \int_0^\infty [\varphi'(t)g(t)]'\theta(t)dt < \infty$$

and

$$\sup_t \sup_{\varphi \in M} \frac{|\varphi'(t)g(t)|}{\theta(t)} < \infty.$$

Then for each $\varphi_0 \in M$ and $\epsilon > 0$

$$\lim_{T \to \infty} \mu_{\varphi_0} \left(\left\{ x : \int_0^T \left[\frac{d}{dt} (\varphi_0(t) - \varphi_T^*(t)) \right] g^2(t) dt > \epsilon \right\} \right) = 0.$$

Proof. The functional (5) can be converted as follows:

$$2\int_{0}^{T} \omega'(t)g(t)d\omega(t) + \int_{0}^{T} [\omega'(t)]^{2}g(t)dt$$

$$-2\int_{0}^{T} \varphi_{0}'(t)g(t)d\omega(t) + \int_{0}^{T} [\varphi_{0}'(t)]^{2}g(t)dt, \qquad (6)$$

where $\omega(t) = \varphi(t) - \varphi_0(t)$.

It is evident that the minimum points ω_T^* for the functional (5) and for the functional

$$\widetilde{\Phi}(T,\omega) = -2\int_{0}^{T} \omega'(t)g'(t)d\omega(t) + \int_{0}^{T} [\omega'(t)]^{2}g(t)dt$$
(7)

coincide $(\omega_T^* = \varphi_T^* - \varphi_0).$

Suppose that $\widetilde{M}_0 = \{ \omega : \omega = \varphi - \varphi_0, \ \varphi \in M \},\$

$$S_{\epsilon} = \left\{ \omega : \omega \in \widetilde{M}_{0}, \int_{0}^{\infty} [\omega'(t)]^{2} g^{2}(t) dt \ge \epsilon \right\}.$$

Then we have

$$\mu_{\varphi_0}\left(\left\{x:\varphi_T^*\in M, \ \int_0^T \left[\frac{d}{dt}(\varphi_T^*(t)-\varphi_0(t))\right]^2 g^2(t)dt \ge \epsilon\right\}\right)$$
$$\le P\{\inf_{\omega\in S_\epsilon}\widetilde{\Phi}(T,\omega)>0\}.$$
(8)

It is easy to prove that with probability one the functional (7) convergences to $+\infty$ uniformly with respect to $\omega' \in S_{\epsilon}$ as $T \to \infty$.

In the linear shell \widetilde{M}_0 we introduce the following norm

$$||\omega||_g = \left(\int_0^T [\omega'(t)]^2 g^2(t) dt\right)^{1/2}.$$
(9)

According to Theorem 1 \widetilde{M}_0 is compact in norm (9). Let on the σ -algebra generated by Borel sets from \widetilde{M}_0 in the norm (9) the measure $\theta(da)$ be given. Consider the following Bayesian criterion

$$\varphi_T^*(x) = \frac{\int \varphi \exp\{\int_0^T \varphi'(t)g(t)dt - \frac{1}{2}\int_0^T [\varphi'(t)]^2 g(t)dt\}\theta(da)}{\int \exp\{\int_0^T \varphi'(t)g(t)dt - \frac{1}{2}\int_0^T [\varphi'(t)]^2 g(t)dt\}\theta(da)}.$$
(10)

It is not difficult to prove the following theorem.

Theorem 2. Let M be a convex set satisfying conditions 1) - 4), for all $\epsilon > 0$ one can indicate $\lambda > 1$ and $\epsilon_1 < \epsilon$ such that for all sufficiently large T and $\omega \in \widetilde{M}_0$:

$$\sup_{||\omega||_g \le \epsilon_1} \int_0^T [\omega^{'}(t)]^2 g(t) dt \le \frac{1}{\lambda} \inf_{||\omega||_g > \epsilon} \int_0^T [\omega^{'}(t)]^2 g(t) dt,$$

and a measure $\theta(da)$ such that $\forall \varphi_1 \in M : \theta(\{\varphi : ||\varphi - \varphi_1||_g \le \epsilon\}) > 0$, then $\epsilon > 0 :$

$$\lim_{T \to \infty} P\{||\varphi_T^* - \varphi_0|| > \epsilon\} = 0.$$

REFERENCES

- IBRAMKHALILOV, I., SKOROKHOD, A. Consistent Estimates of Parameters of Random Processes (Russian). Naukova Dumka, Kiev, 1980.
- 2. ZERAKIDZE, Z., MUMLADZE, M. Statistical Structures and Consistent Criteries for Checking Hypotheses. *Deutschland-Lambert Academic Publishing*, Saarbrucken, 2015.

3. ZERAKIDZE, Z., PURTUKHIA, O. The consistent criteria for hypotheses testing. Ukrainian Mathematical Journal, **71**, 4 (2019), 486-501.

Received 30.05.2019; revised 21.11.2019; accepted 29.12.2019.

Author(s) address(es):

Zurab Zerakidze, Lela Aleksidze, Laura Eliauri Gori State University Chavchavadze Ave. 53, 1400 Gori, Georgia E-mail: zura.zerakidze@mail.ru, lela.aleksidze@gmail.com, laura.eliauri@gmail.com