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BAYESIAN CONSISTENT CRITERIA FOR THE WIENER PROCESS
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Abstract. Existence of Bayesian consistent criteria for the Wiener process is investigated.
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1 Introduction. We observe the process x(t, ω) = φ(t) +W (t, ω), where W (t) is
the standard Wiener process and φ ∈ M (M is some set from C([0,∞))). The set of
hypotheses is unknown mean values φ(t) of the observed process. The purpose of this
article is to indicate the conditions under which for φ ∈ M there exists a consistent
criteria for hypothesis testing.

2 Content. Let µψ be a measure on C([0,∞)), corresponding to the process φ(t)+
W (t), µTφ is a measure on C([0, T ]), corresponding to x(t), t ∈ [0, T ]. Suppose that
for all T > 0 the measure µTφ is absolute continuous with respect to the measure µT0 ,
corresponding to W (t), t ∈ [0, T ], that is, the following conditions are true:

1) for φ ∈ M, φ(0) = 0, there exists φ
′
(t) and ∀T > 0 if∫ T

0

[φ
′
(t)]2dt < ∞, then µTφ ≪ µT0 , (1)

at that
µTφ
µT0

[x(·)] = exp

{∫ T

0

φ
′
(t)dt− 1

2

∫ T

0

[φ
′
(t)]2dt

}
. (2)

If (1) is satisfied, then for the orthogonality of the measures µφ1 and µφ1 it is necessary
and sufficient that ∫ T

0

[φ
′

1(t)− φ
′

2(t)]
2dt = 0. (3)

Next, suppose the following condition holds:
2) there is a differentiable function g(t), such that g(t) → 0 as t → ∞ and∫ ∞

0

g2(t)[φ′(t)]2dt < ∞ (4)

uniformly with respect to φ, and for φ1 ̸= φ2, φ1, φ2 ∈ M :∫ ∞

0

g2(t)[φ1
′(t)− φ2

′(t)]2dt = +∞.
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Consider the quadratic functional

Φ(t, φ, x) = −2

∫ T

0

φ′(t)g(t)dx(t) +

∫ T

0

[φ′(t)]2g(t)dt. (5)

3) there exists a derivative φ
′′
(t), which for all T > 0 belongs to a compact set in

L2([0, T ]).
Rewriting the stochastic integral in (5) as an ordinary integral∫ T

0

φ′(t)g(t)dx(t) = x(T )φ
′
(T )g(T )−

∫ T

0

x(t)[φ′(t)g(t)]
′
dt

we see that there is such a function φT (t, x) = φ∗
T (t) ∈ M, for which the functional from

(5) takes the minimal value on M if φ(t) = φ∗
T (t).

Theorem 1. Let conditions 1) - 3) be fulfilled and moreover: 4) there is an increasing
function θ(t) such that

P

{
lim
t−→∞

W (t)

θ(t)
= 0

}
= 1,

sup
φ∈M

∫ ∞

0

[φ′(t)g(t)]
′
θ(t)dt < ∞

and

sup
t

sup
φ∈M

|φ′(t)g(t)|
θ(t)

< ∞.

Then for each φ0 ∈ M and ϵ > 0

lim
T→∞

µφ0

({
x :

∫ T

0

[
d

dt
(φ0(t)− φ∗

T (t))

]
g2(t)dt > ϵ

})
= 0.

Proof. The functional (5) can be converted as follows:

2

∫ T

0

ω′(t)g(t)dω(t) +

∫ T

0

[ω′(t)]2g(t)dt

−2

∫ T

0

φ0
′(t)g(t)dω(t) +

∫ T

0

[φ0
′(t)]2g(t)dt, (6)

where ω(t) = φ(t)− φ0(t).
It is evident that the minimum points ω∗

T for the functional (5) and for the functional

Φ̃(T, ω) = −2

∫ T

0

ω
′
(t)g

′
(t)dω(t) +

∫ T

0

[ω
′
(t)]2g(t)dt (7)

coincide (ω∗
T = φ∗

T − φ0).
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Suppose that M̃0 = {ω : ω = φ− φ0, φ ∈ M},

Sϵ =

{
ω : ω ∈ M̃0,

∫ ∞

0

[ω
′
(t)]2g2(t)dt ≥ ϵ

}
.

Then we have

µφ0

({
x : φ∗

T ∈ M,

∫ T

0

[
d

dt
(φ∗

T (t)− φ0(t))

]2
g2(t)dt ≥ ϵ

})

≤ P{ inf
ω∈Sϵ

Φ̃(T, ω) > 0}. (8)

It is easy to prove that with probability one the functional (7) convergences to +∞
uniformly with respect to ω

′ ∈ Sϵ as T → ∞.

In the linear shell M̃0 we introduce the following norm

||ω||g =
(∫ T

0

[ω
′
(t)]2g2(t)dt

)1/2

. (9)

According to Theorem 1 M̃0 is compact in norm (9). Let on the σ-algebra generated

by Borel sets from M̃0 in the norm (9) the measure θ(da) be given. Consider the following
Bayesian criterion

φ∗
T (x) =

∫
φ exp{

∫ T
0
φ

′
(t)g(t)dt− 1

2

∫ T
0
[φ

′
(t)]2g(t)dt}θ(da)∫

exp{
∫ T
0
φ′(t)g(t)dt− 1

2

∫ T
0
[φ′(t)]2g(t)dt}θ(da)

. (10)

It is not difficult to prove the following theorem.

Theorem 2. Let M be a convex set satisfying conditions 1) - 4), for all ϵ > 0 one can

indicate λ > 1 and ϵ1 < ϵ such that for all sufficiently large T and ω ∈ M̃0 :

sup
||ω||g≤ϵ1

∫ T

0

[ω
′
(t)]2g(t)dt ≤ 1

λ
inf

||ω||g>ϵ

∫ T

0

[ω
′
(t)]2g(t)dt,

and a measure θ(da) such that ∀φ1 ∈ M : θ({φ : ||φ− φ1||g ≤ ϵ}) > 0, then ϵ > 0 :

lim
T→∞

P{||φ∗
T − φ0|| > ϵ} = 0.
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