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In [1] we considered the class of schemes, corresponding to the Gauss-Hermite type
method for the approximate solution of the Cauchy problem for ordinary differential
equations (ODEs) with high order of accuracy. This method is a realization of the ex-
trapolation method [2] which proposes some clear extensions for the investigation of the
initial-boundary value problems. Below we give some remarks and corresponding observa-
tion of some important publications, dedicated to the construction of the initial data for
the Cauchy problem. It is well known that there are two classes of methods by which the
initial data are defined for the numerical solution of the Cauchy problem by high order of
the remainder term: Runge-Kutta-Buthcher type and Adams-Bashforth methods. When
the number of nodes tends to infinity, the necessary condition of stability and conver-
gence is broken for Runge-Kutta-Buthcher type methods since the coefficients (using for
calculate right part of ODEs) bj,s, j = 1, ...,m, s = 1, ...,m − 1 (m is order of schemes)
for definition the corresponding process have different signs [3, Tabbele 15.5, p.329]. For
Adams-Bashfort type methods, the condition of stability and convergence depends on the
sign of weights of Newton-Kotes quadrature formulas [4]. More precisely, we proved that
an error estimate (the difference between exact and approximate solutions) depends also
on the sum of absolute value of the weights of quadrature formulas. It is known that
Kuzmin’s effect about unbounded of corresponding weights is true [5]. The author proves
that the sums of positive or negative coefficients tend to infinity. Thus, for both classes
they are unstable if using high order of approximations when the number of nodes tends
to infinity. If we use the methods, containing two stages as in [2], for the second stage
when the Gauss type convergence process is applicable, the corresponding subschemes are
stable. At the same time the process of stability defining on the subintervals for the first
stages for local error estimates are not investigated, when the number of nodes tends to
infinity.

In [1] we created the method of the approximate solution of the Cauchy problem
for ODEs, containing two stages: first, for local processes using Hermite interpolation
formulas (depending on ordinates and slopes); and the second containing Gauss type
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quadrature formulas. The roots of the Legendre polynomials have been taken as the
nodes. Below we modify this process.

At first we introduced matrices of nodes in Fejer’s sense [6]. Let us consider the
Hermite interpolation formula with ordinates and slopes:

H2n−1(x) =
n∑

k=1

ykA
(n)
k (x) +

∑
y′kB

(n)
k (x), (1)

where

A
(n)
k =

[
1− ω′′(xk)

ω′(xk)
(x− xk)

]
l2k(x), B

(n)
k = (x− xk)l

2
k(x),

lk(x) = l
(n)
k (x) =

ω(x)

ω′(xk)(x− xk)
, ω(x) = ωn(x) =

n∐
k=1

(x− xk).

Let us consider the linear functions:

vk(x) = v
(n)
k (x) = 1− ω′′(xk)

ω′(xk)
(x− xk). (2)

Following to Leopold Fejer we introduce the definition: If for all x ∈ (a, b) and for all
k, n (n = 1, 2, 3, ..., k = 1, 2, ..., n) the functions

v
(n)
k (x) ≥ 0,

then matrix {x(n)
k (k = 1, 2, ..., n, n = 1, 2, 3, ...)} is called as normal matrix. If for same

conditions
v
(n)
k (x) ≥ ρ > 0,

then the corresponding matrix is called a strong normal or ρ-normal matrix. Below we
define x

(n)
k nodes as the roots of the polynomial:

ω(x) = ωn(x) =

∫ x

−1

Pn−i(t)dt, (3)

where Pn−1(x) are Legendre polynomials. In [6, p. 556] it is proved that {x(n)
k (k =

1, 2, ..., n, n = 1, 2, 3, ...)} is a 1-normal matrix. We also consider the case when the nodes
are the roots of Chebyshev polynomials. The corresponding matrix is a 1/2 normal [see
6, p. 556].

Now we consider the of approximate solution of the Cauchy problem:

y′(x) = f(x, y(x)), 0 < x ≤ l, (4)

y(0) = y0. (5)

We applied here Gauss-Hermite type schemes when nodes are defined by (3) or roots
of Chebyshev polynomials.
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We define the process of finding the approximate solution of (4), (5) by using [1] and
either Lobatto or Curtis-Clanshow quadrature formulas. For the realization of this scheme
it is necessary to prepare the initial table with high order of accuracy. As we noted above,
Bakhvalov’s method [4] is unstable. Now we modify this approach.

Let for application of (1) the first interval be (0, l1) with nodes as elements of ρ normal
matrices. For application of (1) we have to know approximately y = yi (i = 0, 1, ..., n) and
y′i = f(xi, yi) Below we find the initial data with high order of accuracy. For this we assume
that problem (4), (5) is solved by any rough numerical scheme and for the difference
between exact and approximate solutions we have: η(x) = hpφ(x), φ(x) ∈ C(0.l).

Now from [4] equations (4), (5) we have:

y(xj) = y1 +
n∑

i=1

cjiy
′(xi) +Rj, (j = 2, 3, ..., n). (6)

By neglecting the remainder, we get:

ζ(xj) = y(xj)− y(xj) =
n∑

i=1

cji(y
′(xi)− y′(xi)) +Rj. (7)

Now we solve (7) by the iteration method. We define |ζ(x)| = z(x) and consider the
following relations (k is a number of iterations):

z[k](xj) ≤
n∑

i=1

|cji|Mz[k−1](xi), M = sup

∣∣∣∣∂f∂y
∣∣∣∣ . (8)

For estimating z[k](xj) below we use some inequalities [see e.g. 6]:

n∑
i=1

|cji| ≤ λnxj, λn ≤ 1

ρ

√
n,

where λn are Lebesgue numbers and let η(x) correspond to k = 0. Then we have:

z[1](xj) ≤ hpM1, M1 = sup |φ(x)|, z[k+1](xj) ≤
(
xn

ρ

√
nM

)k

hpM1,

ζ(xj) ≤ z[k](xj) ≤ ch2n.

Now we extend (1) for the interval (0, 2l1) and calculate yi, y
′
i (i = n, n+1, ..., 2n−1).

We underline that the nodes are choose so that they would be the elements of ρ-normal
matrix for interval (l1, 2l1) too. Now for finding the values yn, y2n we applied Lobatto
type quadrature processes, as xi (i = 1, 2, ..., n) roots of ω(x) are also the abscissas of
corresponding quadrature formulas. Let us recall that [see e.g. 7, point 25.4.32]:∫ 1

−1

f(x)dx =
2

n(n− 1)
[f(−1) + f(1)] +

n−1∑
i=2

wif(xi) +Rn,
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wi =
2

n(n− 1)[Pn−1(xi)]2
, (xi ̸= ±1) :

P ′
n−1(xi) = 0, i = 2, ..., n− 1; Rn =

−n(n− 1)22n−1[(n− 2)!]4

(2n− 1)[(2n− 2)!]2
f (2n−2)(ξ), (−1 < ξ < 1).

This is Lobatto’s formula with weights, abscissas and remainder.
Now let us formulate the final results by using the above data. At first if we rewrite the

Hermite formula (1) for interval (sl1, (s + 1)l1), s = 0, 1, 2, ...,m, ml1 = l the following
priory estimation is valid:

|H2n−1(x)| ≤ max |yi|+max |y′i|
l1
ρ
.

On the another hand, if we apply Lobatto’s or other Gauss type quadrature formulas
(same of [1]) we see that the calculate of approximate solution of the Cauchy problem
is a stable process and is converging with order O(h2n) corresponding to the remainder
members of Hermite and Gauss type relations.
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