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It is 65 years since Yang and Mills (1954) [1] performed their pioneering work on gauge
theories. In the standard model of particle physics, the strong force is described by the
theory of quantum chromodynamics (QCD). At ordinary temperatures or densities this
force just confines the quarks into composite particles (hadrons) of size around 10−15 m
= 1 femtometer = 1 fm (corresponding to the QCD energy scale ΛQCD=200 MeV) and
its effects are not noticeable at longer distances. However, when the temperature reaches
the QCD energy scale (of order 1012 kelvins) or the density rises to the point where the
average inter-quark separation is less than 1 fm (quark chemical potential around 400
MeV), the hadrons are melted into their constituent quarks, and the strong interaction
becomes the dominant feature of the physics. Such phases are called quark matter or
QCD matter or Gluquar. The strength of the color force makes the properties of quark
matter unlike gas or plasma, instead leading to a state of matter more reminiscent of a
liquid. At high densities, quark matter is a Fermi liquid, but is predicted to exhibit color
superconductivity at high densities and temperatures below 1012 K. Confining property
of the background state, asymptotic freedom (AF) and infrared (IR) freezing, effective
mass entering the IR freezing logarithms are in good agreement with phenomenology and
lattice data. QCD is the theory of the strong interactions with, as only inputs, one mass
parameter for each quark species and the value of the QCD coupling constant at some
energy or momentum scale in some renormalization scheme. This last free parameter of
the theory can be fixed by ΛQCD, the energy scale used as the typical boundary condition
for the integration of the Renormdynamic (RD) equation for the strong coupling constant.
This is the parameter which expresses the scale of strong interactions, the only parameter
in the limit of massless quarks. While the evolution of the coupling with the momentum
scale is determined by the quantum corrections induced by the renormalization of the
bare coupling and can be computed in perturbation theory, the strength itself of the
interaction, given at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the theory and has to
be taken from experiment. The RD equations play an important role in our understanding
of Quantum Chromodynamics and the strong interactions. The beta function and the
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quarks mass anomalous dimension are among the most prominent objects for QCD RD
equations. The calculation of the one-loop β-function in QCD has lead to the discovery of
asymptotic freedom in this model and to the establishment of QCD as the theory of strong
interactions (see [2]). The MS-scheme belongs to the class of massless schemes where the
β-function does not depend on masses of the theory and the first two coefficients of the
β-function are scheme-independent.

The Lagrangian of QCD with massive quarks in the covariant gauge is

L = −1

4
F a
µνF

aµν + q̄n(iγD −mn)qn −
1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAb
µc

c),

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (Dµ)kl = δkl∂µ − igtaklA

a
µ.

The notion of asymptotic freedom is basic in establishing QCD as a selfconsistent the-
ory. The extrapolation of the QCD coupling constant as αs(Q) to larger distances (smaller
momenta Q) leads however to inconsistencies of several kinds in the pure (nonbackground)
perturbation theory.

The RD equation for the coupling constant is

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 +O(a6),

a =
αs

4π
=

( g

4π

)2

,

∫ a

a0

da

β(a)
= t− t0 = ln

µ2

µ2
0

,

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme. To calcu-
late the β-function we need to calculate the renormalization constant Z of the coupling
constant, ab = Za, where ab is the bare (unrenormalized) charge. The expression of the
β-function can be obtained in the following way

0 = d(abµ
2ε)/dt = µ2ε

(
εZa+

∂(Za)

∂a

da

dt

)
⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a), β(a) = a
d

da
(aZ1),

where

β(a, ε) =
D − 4

2
a+ β(a)

is D−dimensional β−function and Z1 is the residue of the first pole in ε expansion

Z(a, ε) = 1 + Z1ε
−1 + · · ·+ Znε

−n + · · · . (1)

Since Z does not depend explicitly on µ, the β-function is the same in all MS-like schemes,
i.e. within the class of renormalization schemes which differ by the shift of the parameter
µ. Note that, presentation of Z in the form of expansion (1) is formal. If we take ε = 1/p,
we can give the expansion p-adic sense [3]. So, we will have renormalization factors Z as
analytic functions of p-adic argument. RD equation,

ȧ = β1a+ β2a
2 + · · ·
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can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑
n≥1

fnA
n,

Ȧ = b1A+ b2A
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∑
n≥1

bnA
n,

(2)

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A
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n + ...) + β2(A
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+βn(A
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2
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n + ...

=
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Anbn1n2fn2δn,n1+n2−1

=
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Anβmf
m1
1 ...fmk
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,

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f 2

2 − f3)β1,
b4 = β4 + 3f2β3 + f 2

2β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...,
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... .

(3)

So, by reparametrization, beyond the critical dimension (β1 ̸= 0) we can change any
coefficient but β1. We can fix any higher coefficient with zero value, if we take

f2 =
β2

β1

, f3 =
β3

2β1

+ f 2
2 , ... , fn =

βn + ...

(n− 1)β1

, ... .

In the critical dimension of space-time, β1 = 0, and we can change by reparametrization
any coefficient but β2 and β3. From the relations (3), in the critical dimension (β1 = 0),
we find that, we can define the minimal form of the RD equation

Ȧ = β2A
2 + β3A

3. (4)

We can solve (4) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+

β3

β2

,

then, as in the noncritical case, explicit solution will be given by reparametrization rep-
resentation (2) [4]. If we know somehow the coefficients βn, e.g. for first several exact
and for others asymptotic values (see e.g. [5]) than we can construct reparametrization
function (2) and find the dynamics of the running coupling constant. This is similar
to the action-angular canonical transformation of the analytic mechanics. Statement:
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The reparametrization series for a is p-adically convergent, when βn and A are rational
numbers. Let us solve fundamental equation of RD (4)

dA

β2A3(1/A+ β3/β2)
= dt ⇒ d(1/A)1/A

1/A+ β3/β2

= −β2dt ⇓

x− a ln(x+ a) = −β2t+ c, x = 1/A, a = β3/β2.
(5)

Nonperturbative extension means the following change

t = ln
p2

Λ2
→ tm = ln

p2 +m2

Λ2
,
dtm
dt

=
p2

p2 +m2
,

in the solution (5). Let us fined corresponding RD motion equation

ẋ
(
1− a

x+ a

)
= −β2

p2

p2 +m2
⇓ Ȧ = (β2A

2 + β3A
3)

p2

p2 +m2
=

{
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= 1− m2
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e(1/A−c)/β2(1/A+ β3/β2)

−β3/β2
2 .

If we have infrared asymptotic freedom (as in QED) and ultraviolet fixed point, we
take the modified time variable as

tm = ln
( m2/Λ2

1 +m2/p2

)
,
dtm
dt

=
m2/p2

1 +m2/p2
=

m2

m2 + p2
=

{
1 p2 ≪ m2

m2/p2 p2 ≫ m2.

The extended renormdynamics motion equation is

Ȧ = (β2A
2 + β3A

3)
m2

p2 +m2
=

{
βpert, p2 ≪ m2,
0, p2 ≫ m2,

m2

p2 +m2
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m2
e−(1/A−c)/β2(1/A+ β3/β2)
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2 .
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