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LOCALIZED BOUNDARY-DOMAIN INTEGRAL EQUATIONS APPROACH WITH
PIECEWISE CONSTANT CUT-OFF FUNCTION FOR THE DIRICHLET PROBLEM
OF THE HEAT TRANSFER EQUATION WITH A VARIABLE COEFFICIENT
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Abstract. A localized boundary-domain integro-differential equations system associated with
the Dirichlet boundary value problem for the stationary heat transfer partial differential equation
with a variable coefficient is obtained and analysed.
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In the paper the localized boundary-domain integro-differential equations (LBDIDE)
system associated with the Dirichlet boundary value problem (BVP) for the stationary
heat transfer partial differential equation with a variable coefficient is obtained and anal-
ysed. The parametrix is localized by a characteristic function of a ball of radius € which is
not a smooth cut-off function in the whole space. For smooth localizing cut-off functions
this method is theoretically studied and substantiated in [1], [2], where the BVPs are
reduced to systems of Localized boundary-domain integral equations.

The main results of the present paper are equivalence theorems of the LBDIDE systems
to the original variable-coefficient BVPs and unique solvability of the LBDIDE systems
in the corresponding Sobolev spaces.

Let Q be a bounded region of R? surrounded by a simply connected smooth Liapunov
surface S = 90 € C** with a > 0. Let B(y,¢) := {z € R® : |z—y| < &} be a ball centered
at y and radius e, where ¢ is a fixed positive number, and X(y, €) := 0B(y, €).Further, let

Qy,e) .= QN B(y,e), S(y,e) := SN B(y,e), (1)
Yi(y,e) ==Xy, e) NQ, Ly, e) == 0% (y,e) = 0S(y,¢).

It is evident that if the distance from the point y to the boundary S = 02 is grater than
e, dist(y; S) > ¢, then S(y,¢) = @ and 2;(y,¢) = %(y,¢). Note also that for y € Q the
part of the spherical surface 3 (y, €) always possesses a positive measure.

We assume that for a given domain €2 there is gy > 0, such that for arbitrary y € Q
and 0 < £ < g¢ the corresponding domain €Q(y, €) is a piecewise smooth Lipschitz domain.
Notice that this condition is satisfied for a convex domain and for a domain with a
smooth Lyapunov boundary S = 9Q € C**, o > 0. We need this condition to write
the corresponding Green identities in the domain Q(y,¢), y € Q, and also to establish
mapping properties for integral operators involved in our analysis.
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Introduce a harmonic localized parametrix

x(x) 1 for |z| <e¢,
P (z) = ——"—*= = 2
() 4rl|z|’ x(@) { 0 for |z| > e. @)

For f € H°(2) we consider the following scalar elliptic differential equation

A, 0,)ulz) =3 i(a(x)a“(”“")) = f(x), z€Q, (3)

—1 8:1:,@ (():Ek
acC*Q), 0<ay<alr)<a, Yael (4)

A solution function u is sought in the space H°(2, A) = {v € H'(Q) : Av € H(Q)}.

For an arbitrary piecewise smooth Lipschitz domain Q; C 2, by v* = 7391 we denote
the trace operator on 9€; and n(x) is the unit normal vector at the point x € 0€2; directed
outward ;.

With the help of Green’s first identity for an arbitrary function u € HY0(Q, A) we
can define on 0 the canonical conormal derivative TTu = T(;“Qlu =a g—z € H_%((?Ql)
by the relation

3
Ju Ov 1
+ ._ ou ogv 3
(T u,g>891 ,_/ 2 a@xk o dx—i—/glvAudac, Vge H2(0%,), (5)

N g

where v € H'(Q;) and 75, v = g. Below we drop the subscript 99 in the notation of trace
operator and conormal derivative operator when it does not lead to misunderstanding.

For arbitrary functions u,v € H"°(Q;, A) then we have the following Green first and
second identities

ou v ., n
/ vAudaH—/Q a_ma_mdx (T*u, v U>691’ (6)
1 k=1
/Ql (vAu — u Av) dz = (T, ’y+v>891 — (T, fy+u>8Q1. (7)

Remark. Here and in what follows the angled brackets should be understood as duality
pairing of H~2(99;) with Hz(8€,;). In the case of a proper sub-manifold S; C 99,
with piecewise smooth Lipschitz boundary curve 05 # @ (e.g., S(y,e) or X(y,¢e) for
dist(y, S) < ¢) the angled brackets denote duality pairing of either H~2(S;) with Hz(S;)
or H=2(Sy) with Hz(S,), where H*(S;) and H*(S;) are mutually adjoint spaces defined
as follows

H*(Sy) :== {g € H*(0) : supp ¢ C 31}, H*(Sy) == {rslg S g€ Hs(aﬁl)}.
Here 7 is the restriction operator onto 5.

Using Green’s second formula (7) for the domain Q; = Q(y,¢) \ B(y, d) with ¢ € (0,¢)
and for the functions u € H*(Q, A) and P (y —-) € H*'(Q\ B(y, ), A), and passing to
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the limit as 6 — 0, by standard arguments one can derive Green’s third formula
a(y) u(y) + Reu(y) — Va(TTu)(y) + We(v"u)(y) = P(Au)(y), VyeQ,  (8)

where vTu and T u are respectively the trace of u and the canonical conormal derivative
of u on the boundary 0Q(y,e) = S(y,e) U X1 (y,e) U L(y,e),

vru € H2(0Q(y,e)), True H 2(00(y,e)), (9)

R. is a localized weakly singular integral operator

R-u(y) := lim [A(z,0) P (x — y)|u(x) do = / R(z,y) u(x) dz,
070 Ja(y.e)\B(y.9) y.e)
1< da(z) 0 1

o _ -2 .
R(z,y) = —— 2 B Dulo—] O(lx —y[™7) for x€Q(y,e);

V., W,, and P. are the localized single layer, double layer, and Newtonian volume type
potentials respectively,

1 1
+ ._ +
Ve (TTu)(y) := AT /g(y,e)uzl(y,e) |z =y Trule) dBe, 1)
1 1
W. (~+ — = | A7t
€ (7 u)(y) T 47'(' /S(y,g)UEl(y#g |:T(.§L’, 8) |JI . y|:| Y U<I> dS:BJ (11)
1 1
P- (Au ::/ P.(x—vy)Au(x)dx = —— / Au(x) dzx. 12
W= [ Pl au@de= - [ A e (12

Q(y,e)

The trace on S of Green’s third formula (8) exists and reads as

R u(y) = V(T u)y) + 2 aly)ruls) + Wa(ru) () = 73 P-(Au)(y), Yy € S, (13

The following auxiliary lemma plays a crucial role in our analysis.

Lemma. Let ¢ be a fized positive number and let Qy,e) be the domain defined in (1).
Let g € H(Q) and

1
dr =0 Yy € Q. 14
L =0 voe (14)

Then g = 0 in €.
Now let us consider the Dirichlet problem for the operator A(z,d) defined in (3): Find
a function v € H9(Q, A) such that

Az, 0,)u= f in Q, fe&HYQ), (15)
vy u =y on S, ©o € H%(S). (16)
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It is a well known classical result that the Dirichlet problem (15)—(16) is uniquely solvable
(see, e.g., [3]).

Substituting the data of the Dirichlet problem under consideration into Green’s third
formula (8) and into its trace formula (13) on S, we obtain the following system of localized
boundary-domain integro-differential equations with respect to the unknown function w,

au+Reu—Vo(TTu)+ Wo(vu) =P.f in Q, (17)
1
Vs Rew = Vo(TT ) + 5 aly) po + We(y"u) = 15 P(f) on S, (18)

where the traces of the densities in the potential type operators are taken on the integra-
tion surface 0Q(y,e) = S(y,e) U X1 (y,e) U L(y,e).
There holds the following equivalence theorem.

Theorem 1. Let f € H(Q) and oo € H2(0). The Dirichlet problem (15)—~(16) and the
system of localized boundary-domain integro-differential equations(17)—(18) are equivalent
in the following sense:

(1) If u € H-%(Q, A) solves the Dirichlet problem (15)-(16), then w is a solution to
the system of localized boundary-domain integro-differential equations (17)—(18), and vice
versa,

(ii) If u € H-(Q, A) solves the system of localized boundary domain integro-differen-
tial equations (17)—(18), then u is a solution to the Dirichlet problem (15)—(16).

This theorem implies the following existence result.

Theorem 2. Given f € H%(Q) and o€ Hz (09), the system of localized boundary-domain
integro-differential equations (17)—(18) is uniquely solvable in the space HMO(Q, A).
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