
Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 33, 2019

LOCALIZED BOUNDARY-DOMAIN INTEGRAL EQUATIONS APPROACH WITH
PIECEWISE CONSTANT CUT-OFF FUNCTION FOR THE DIRICHLET PROBLEM

OF THE HEAT TRANSFER EQUATION WITH A VARIABLE COEFFICIENT
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Abstract. A localized boundary-domain integro-differential equations system associated with

the Dirichlet boundary value problem for the stationary heat transfer partial differential equation

with a variable coefficient is obtained and analysed.
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In the paper the localized boundary-domain integro-differential equations (LBDIDE)
system associated with the Dirichlet boundary value problem (BVP) for the stationary
heat transfer partial differential equation with a variable coefficient is obtained and anal-
ysed. The parametrix is localized by a characteristic function of a ball of radius ε which is
not a smooth cut-off function in the whole space. For smooth localizing cut-off functions
this method is theoretically studied and substantiated in [1], [2], where the BVPs are
reduced to systems of Localized boundary-domain integral equations.

The main results of the present paper are equivalence theorems of the LBDIDE systems
to the original variable-coefficient BVPs and unique solvability of the LBDIDE systems
in the corresponding Sobolev spaces.

Let Ω be a bounded region of R3 surrounded by a simply connected smooth Liapunov
surface S = ∂Ω ∈ C2,α with α > 0. LetB(y, ε) := {x ∈ R3 : |x−y| 6 ε} be a ball centered
at y and radius ε, where ε is a fixed positive number, and Σ(y, ε) := ∂B(y, ε).Further, let

Ω(y, ε) := Ω ∩B(y, ε), S(y, ε) := S ∩B(y, ε),
Σ1(y, ε) := Σ(y, ε) ∩ Ω, ℓ(y, ε) := ∂Σ1(y, ε) = ∂S(y, ε).

(1)

It is evident that if the distance from the point y to the boundary S = ∂Ω is grater than
ε, dist(y;S) > ε, then S(y, ε) = ∅ and Σ1(y, ε) = Σ(y, ε). Note also that for y ∈ Ω the
part of the spherical surface Σ1(y, ε) always possesses a positive measure.

We assume that for a given domain Ω there is ε0 > 0, such that for arbitrary y ∈ Ω
and 0 < ε < ε0 the corresponding domain Ω(y, ε) is a piecewise smooth Lipschitz domain.
Notice that this condition is satisfied for a convex domain and for a domain with a
smooth Lyapunov boundary S = ∂Ω ∈ C1,α, α > 0. We need this condition to write
the corresponding Green identities in the domain Ω(y, ε), y ∈ Ω, and also to establish
mapping properties for integral operators involved in our analysis.
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Introduce a harmonic localized parametrix

Pχ(x) := − χ(x)

4 π |x|
, χ(x) :=

{
1 for |x| < ε,

0 for |x| > ε.
(2)

For f ∈ H0(Ω) we consider the following scalar elliptic differential equation

A(x, ∂x)u(x) :=
3∑

k=1

∂

∂xk

(
a(x)

∂u(x)

∂xk

)
= f(x), x ∈ Ω, (3)

a ∈ C2(Ω), 0 < a0 6 a(x) 6 a1, ∀x ∈ Ω. (4)

A solution function u is sought in the space H1,0(Ω, A) = {v ∈ H1(Ω) : Av ∈ H0(Ω)}.
For an arbitrary piecewise smooth Lipschitz domain Ω1 ⊆ Ω, by γ+ = γ+

∂Ω1
we denote

the trace operator on ∂Ω1 and n(x) is the unit normal vector at the point x ∈ ∂Ω1 directed
outward Ω1.

With the help of Green’s first identity for an arbitrary function u ∈ H1,0(Ω1, A) we

can define on ∂Ω1 the canonical conormal derivative T+u ≡ T+
∂Ω1

u = a ∂u
∂n

∈ H− 1
2 (∂Ω1)

by the relation

〈
T+u , g

〉
∂Ω1

:=

∫
Ω1

3∑
k=1

a
∂u

∂xk

∂v

∂xk

dx+

∫
Ω1

v Au dx, ∀ g ∈ H
1
2 (∂Ω1), (5)

where v ∈ H1(Ω1) and γ+
∂Ω1

v = g. Below we drop the subscript ∂Ω1 in the notation of trace
operator and conormal derivative operator when it does not lead to misunderstanding.

For arbitrary functions u, v ∈ H1,0(Ω1, A) then we have the following Green first and
second identities ∫

Ω1

v Au dx+

∫
Ω1

3∑
k=1

a
∂u

∂xk

∂v

∂xk

dx =
〈
T+u , γ+v

〉
∂Ω1

, (6)∫
Ω1

(
v Au− uAv

)
dx =

〈
T+u , γ+v

〉
∂Ω1

−
〈
T+v , γ+u

〉
∂Ω1

. (7)

Remark. Here and in what follows the angled brackets should be understood as duality
pairing of H− 1

2 (∂Ω1) with H
1
2 (∂Ω1). In the case of a proper sub-manifold S1 ⊂ ∂Ω1

with piecewise smooth Lipschitz boundary curve ∂S1 ̸= ∅ (e.g., S(y, ε) or Σ1(y, ε) for

dist(y, S) < ε) the angled brackets denote duality pairing of either H− 1
2 (S1) with H̃

1
2 (S1)

or H̃− 1
2 (S1) with H

1
2 (S1), where H̃s(S1) and Hs(S1) are mutually adjoint spaces defined

as follows

H̃s(S1) :=
{
g ∈ Hs(∂Ω1) : supp g ⊆ S1

}
, Hs(S1) :=

{
r
S1
g : g ∈ Hs(∂Ω1)

}
.

Here r
S1

is the restriction operator onto S1.

Using Green’s second formula (7) for the domain Ω1 = Ω(y, ε) \B(y, δ) with δ ∈ (0, ε)
and for the functions u ∈ H1,0(Ω, A) and Pχ(y − ·) ∈ H1,0(Ω \B(y, δ), A), and passing to
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the limit as δ → 0, by standard arguments one can derive Green’s third formula

a(y)u(y) +Rε u(y)− Vε(T
+u)(y) +Wε(γ

+u)(y) = Pε(Au)(y), ∀ y ∈ Ω, (8)

where γ+u and T+u are respectively the trace of u and the canonical conormal derivative
of u on the boundary ∂Ω(y, ε) = S(y, ε) ∪ Σ1(y, ε) ∪ ℓ(y, ε),

γ+u ∈ H
1
2 (∂Ω(y, ε)), T+u ∈ H− 1

2 (∂Ω(y, ε)), (9)

Rε is a localized weakly singular integral operator

Rε u(y) := lim
δ→0

∫
Ω(y,ε)\B(y,δ)

[A(x, ∂)Pχ(x− y)]u(x) dx =

∫
Ω(y,ε)

R(x, y)u(x) dx,

R(x, y) := − 1

4π

3∑
k=1

∂a(x)

∂xk

∂

∂xk

1

|x− y|
= O(|x− y|−2) for x ∈ Ω(y, ε);

Vε, Wε, and Pε are the localized single layer, double layer, and Newtonian volume type
potentials respectively,

Vε (T
+u)(y) :=

1

4π

∫
S(y,ε)∪Σ1(y,ε)

1

|x− y|
T+u(x) dSx, (10)

Wε (γ
+u)(y) :=

1

4π

∫
S(y,ε)∪Σ1(y,ε)

[
T (x, ∂)

1

|x− y|

]
γ+u(x) dSx, (11)

Pε (Au)(y) :=

∫
Ω(y,ε)

Pχ(x− y)Au(x) dx = − 1

4π

∫
Ω(y,ε)

1

|x− y|
Au(x) dx. (12)

The trace on S of Green’s third formula (8) exists and reads as

γ+
S Rε u(y)− Vε(T

+u)(y) +
1

2
a(y)γ+

S u(y) +Wε(γ
+u)(y) = γ+

S Pε(Au)(y), ∀ y ∈ S. (13)

The following auxiliary lemma plays a crucial role in our analysis.

Lemma. Let ε be a fixed positive number and let Ω(y, ε) be the domain defined in (1).

Let g ∈ H̃0(Ω) and ∫
Ω(y,ε)

1

|x− y|
g(x) dx = 0, ∀y ∈ Ω. (14)

Then g = 0 in Ω.
Now let us consider the Dirichlet problem for the operator A(x, ∂) defined in (3): Find

a function u ∈ H1,0(Ω, A) such that

A(x, ∂x)u = f in Ω, f ∈ H0(Ω), (15)

γ+u = φ0 on S, φ0 ∈ H
1
2 (S). (16)
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It is a well known classical result that the Dirichlet problem (15)–(16) is uniquely solvable
(see, e.g., [3]).

Substituting the data of the Dirichlet problem under consideration into Green’s third
formula (8) and into its trace formula (13) on S, we obtain the following system of localized
boundary-domain integro-differential equations with respect to the unknown function u,

a u+Rε u− Vε(T
+u) +Wε(γ

+u) = Pεf in Ω, (17)

γ+
S Rε u− Vε(T

+u) +
1

2
a(y)φ0 +Wε(γ

+u) = γ+
S Pε(f) on S, (18)

where the traces of the densities in the potential type operators are taken on the integra-
tion surface ∂Ω(y, ε) = S(y, ε) ∪ Σ1(y, ε) ∪ ℓ(y, ε).

There holds the following equivalence theorem.

Theorem 1. Let f ∈ H0(Ω) and φ0 ∈ H
1
2 (∂Ω). The Dirichlet problem (15)–(16) and the

system of localized boundary-domain integro-differential equations(17)–(18) are equivalent
in the following sense:

(i) If u ∈ H1, 0(Ω, A) solves the Dirichlet problem (15)–(16), then u is a solution to
the system of localized boundary-domain integro-differential equations (17)–(18), and vice
versa,

(ii) If u ∈ H1, 0(Ω, A) solves the system of localized boundary domain integro-differen-
tial equations (17)–(18), then u is a solution to the Dirichlet problem (15)–(16).

This theorem implies the following existence result.

Theorem 2. Given f ∈H0(Ω) and φ0∈H
1
2 (∂Ω), the system of localized boundary-domain

integro-differential equations (17)–(18) is uniquely solvable in the space H1,0(Ω, A).
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