Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 33, 2019

LOCALIZED BOUNDARY-DOMAIN INTEGRAL EQUATIONS APPROACH WITH PIECEWISE CONSTANT CUT-OFF FUNCTION FOR THE DIRICHLET PROBLEM OF THE HEAT TRANSFER EQUATION WITH A VARIABLE COEFFICIENT

Sveta Gorgisheli

Abstract. A localized boundary-domain integro-differential equations system associated with the Dirichlet boundary value problem for the stationary heat transfer partial differential equation with a variable coefficient is obtained and analysed.

Keywords and phrases: Localized parametrix, localized potential method.

AMS subject classification (2010): 31B10.

In the paper the localized boundary-domain integro-differential equations (LBDIDE) system associated with the Dirichlet boundary value problem (BVP) for the stationary heat transfer partial differential equation with a variable coefficient is obtained and analysed. The parametrix is localized by a characteristic function of a ball of radius ε which is not a smooth cut-off function in the whole space. For smooth localizing cut-off functions this method is theoretically studied and substantiated in [1], [2], where the BVPs are reduced to systems of Localized boundary-domain integral equations.

The main results of the present paper are equivalence theorems of the LBDIDE systems to the original variable-coefficient BVPs and unique solvability of the LBDIDE systems in the corresponding Sobolev spaces.

Let Ω be a bounded region of \mathbb{R}^3 surrounded by a simply connected smooth Liapunov surface $S = \partial \Omega \in C^{2,\alpha}$ with $\alpha > 0$. Let $B(y, \varepsilon) := \{x \in \mathbb{R}^3 : |x-y| \leq \varepsilon\}$ be a ball centered at y and radius ε , where ε is a fixed positive number, and $\Sigma(y, \varepsilon) := \partial B(y, \varepsilon)$. Further, let

$$\Omega(y,\varepsilon) := \Omega \cap B(y,\varepsilon), \qquad S(y,\varepsilon) := S \cap B(y,\varepsilon), \\
\Sigma_1(y,\varepsilon) := \Sigma(y,\varepsilon) \cap \Omega, \qquad \ell(y,\varepsilon) := \partial \Sigma_1(y,\varepsilon) = \partial S(y,\varepsilon).$$
(1)

It is evident that if the distance from the point y to the boundary $S = \partial \Omega$ is grater than ε , dist $(y; S) > \varepsilon$, then $S(y, \varepsilon) = \emptyset$ and $\Sigma_1(y, \varepsilon) = \Sigma(y, \varepsilon)$. Note also that for $y \in \overline{\Omega}$ the part of the spherical surface $\Sigma_1(y, \varepsilon)$ always possesses a positive measure.

We assume that for a given domain Ω there is $\varepsilon_0 > 0$, such that for arbitrary $y \in \Omega$ and $0 < \varepsilon < \varepsilon_0$ the corresponding domain $\Omega(y, \varepsilon)$ is a piecewise smooth Lipschitz domain. Notice that this condition is satisfied for a convex domain and for a domain with a smooth Lyapunov boundary $S = \partial \Omega \in C^{1,\alpha}$, $\alpha > 0$. We need this condition to write the corresponding Green identities in the domain $\Omega(y, \varepsilon)$, $y \in \overline{\Omega}$, and also to establish mapping properties for integral operators involved in our analysis. Introduce a harmonic localized parametrix

$$P_{\chi}(x) := -\frac{\chi(x)}{4\pi |x|}, \qquad \chi(x) := \begin{cases} 1 & \text{for } |x| < \varepsilon, \\ 0 & \text{for } |x| > \varepsilon. \end{cases}$$
(2)

For $f \in H^0(\Omega)$ we consider the following scalar elliptic differential equation

$$A(x,\partial_x)u(x) := \sum_{k=1}^3 \frac{\partial}{\partial x_k} \left(a(x)\frac{\partial u(x)}{\partial x_k} \right) = f(x), \quad x \in \Omega,$$
(3)

$$a \in C^2(\overline{\Omega}), \quad 0 < a_0 \leqslant a(x) \leqslant a_1, \quad \forall x \in \overline{\Omega}.$$
 (4)

A solution function u is sought in the space $H^{1,0}(\Omega, A) = \{v \in H^1(\Omega) : Av \in H^0(\Omega)\}$.

For an arbitrary piecewise smooth Lipschitz domain $\Omega_1 \subseteq \Omega$, by $\gamma^+ = \gamma^+_{\partial\Omega_1}$ we denote the trace operator on $\partial\Omega_1$ and n(x) is the unit normal vector at the point $x \in \partial\Omega_1$ directed outward Ω_1 .

With the help of Green's first identity for an arbitrary function $u \in H^{1,0}(\Omega_1, A)$ we can define on $\partial \Omega_1$ the canonical conormal derivative $T^+u \equiv T^+_{\partial \Omega_1}u = a \frac{\partial u}{\partial n} \in H^{-\frac{1}{2}}(\partial \Omega_1)$ by the relation

$$\left\langle T^{+}u\,,\,g\right\rangle_{\partial\Omega_{1}} := \int_{\Omega_{1}} \sum_{k=1}^{3} a \,\frac{\partial u}{\partial x_{k}} \,\frac{\partial v}{\partial x_{k}} \,dx + \int_{\Omega_{1}} v \,Au \,dx, \qquad \forall \,g \in H^{\frac{1}{2}}(\partial\Omega_{1}), \tag{5}$$

where $v \in H^1(\Omega_1)$ and $\gamma^+_{\partial\Omega_1} v = g$. Below we drop the subscript $\partial\Omega_1$ in the notation of trace operator and conormal derivative operator when it does not lead to misunderstanding.

For arbitrary functions $u, v \in H^{1,0}(\Omega_1, A)$ then we have the following Green first and second identities

$$\int_{\Omega_1} v \, Au \, dx + \int_{\Omega_1} \sum_{k=1}^3 a \, \frac{\partial u}{\partial x_k} \, \frac{\partial v}{\partial x_k} \, dx = \left\langle T^+ u \,, \, \gamma^+ v \right\rangle_{\partial \Omega_1},\tag{6}$$

$$\int_{\Omega_1} \left(v \, A u - u \, A v \right) dx = \left\langle T^+ u \,, \, \gamma^+ v \right\rangle_{\partial \Omega_1} - \left\langle T^+ v \,, \, \gamma^+ u \right\rangle_{\partial \Omega_1}. \tag{7}$$

Remark. Here and in what follows the angled brackets should be understood as duality pairing of $H^{-\frac{1}{2}}(\partial\Omega_1)$ with $H^{\frac{1}{2}}(\partial\Omega_1)$. In the case of a proper sub-manifold $S_1 \subset \partial\Omega_1$ with piecewise smooth Lipschitz boundary curve $\partial S_1 \neq \emptyset$ (e.g., $S(y,\varepsilon)$ or $\Sigma_1(y,\varepsilon)$ for $\operatorname{dist}(y,S) < \varepsilon$) the angled brackets denote duality pairing of either $H^{-\frac{1}{2}}(S_1)$ with $\tilde{H}^{\frac{1}{2}}(S_1)$ or $\tilde{H}^{-\frac{1}{2}}(S_1)$ with $H^{\frac{1}{2}}(S_1)$, where $\tilde{H}^s(S_1)$ and $H^s(S_1)$ are mutually adjoint spaces defined as follows

$$\widetilde{H}^{s}(S_{1}) := \left\{ g \in H^{s}(\partial \Omega_{1}) : supp \quad g \subseteq \overline{S}_{1} \right\}, \qquad H^{s}(S_{1}) := \left\{ r_{s_{1}}g : g \in H^{s}(\partial \Omega_{1}) \right\}.$$

Here r_{S_1} is the restriction operator onto S_1 .

Using Green's second formula (7) for the domain $\Omega_1 = \Omega(y, \varepsilon) \setminus B(y, \delta)$ with $\delta \in (0, \varepsilon)$ and for the functions $u \in H^{1,0}(\Omega, A)$ and $P_{\chi}(y - \cdot) \in H^{1,0}(\Omega \setminus B(y, \delta), A)$, and passing to the limit as $\delta \to 0$, by standard arguments one can derive Green's third formula

$$a(y) u(y) + \mathcal{R}_{\varepsilon} u(y) - V_{\varepsilon}(T^{+}u)(y) + W_{\varepsilon}(\gamma^{+}u)(y) = \mathcal{P}_{\varepsilon}(Au)(y), \quad \forall \ y \in \Omega,$$
(8)

where $\gamma^+ u$ and $T^+ u$ are respectively the trace of u and the canonical conormal derivative of u on the boundary $\partial \Omega(y, \varepsilon) = S(y, \varepsilon) \cup \Sigma_1(y, \varepsilon) \cup \ell(y, \varepsilon)$,

$$\gamma^+ u \in H^{\frac{1}{2}}(\partial\Omega(y,\varepsilon)), \quad T^+ u \in H^{-\frac{1}{2}}(\partial\Omega(y,\varepsilon)),$$
(9)

 $\mathcal{R}_{\varepsilon}$ is a localized weakly singular integral operator

$$\mathcal{R}_{\varepsilon} u(y) := \lim_{\delta \to 0} \int_{\Omega(y,\varepsilon) \setminus B(y,\delta)} [A(x,\partial)P_{\chi}(x-y)]u(x) \, dx = \int_{\Omega(y,\varepsilon)} R(x,y) \, u(x) \, dx,$$
$$R(x,y) := -\frac{1}{4\pi} \sum_{k=1}^{3} \frac{\partial a(x)}{\partial x_{k}} \frac{\partial}{\partial x_{k}} \frac{1}{|x-y|} = \mathcal{O}(|x-y|^{-2}) \quad \text{for} \quad x \in \Omega(y,\varepsilon);$$

 V_{ε} , W_{ε} , and $\mathcal{P}_{\varepsilon}$ are the localized single layer, double layer, and Newtonian volume type potentials respectively,

$$V_{\varepsilon}(T^+u)(y) := \frac{1}{4\pi} \int_{S(y,\varepsilon)\cup\Sigma_1(y,\varepsilon)} \frac{1}{|x-y|} T^+u(x) \, dS_x,\tag{10}$$

$$W_{\varepsilon}(\gamma^{+}u)(y) := \frac{1}{4\pi} \int_{S(y,\varepsilon)\cup\Sigma_{1}(y,\varepsilon)} \left[T(x,\partial)\frac{1}{|x-y|} \right] \gamma^{+}u(x) \, dS_{x},\tag{11}$$

$$\mathcal{P}_{\varepsilon}\left(Au\right)(y) := \int_{\Omega(y,\varepsilon)} P_{\chi}(x-y) Au(x) \, dx = -\frac{1}{4\pi} \int_{\Omega(y,\varepsilon)} \frac{1}{|x-y|} Au(x) \, dx. \quad (12)$$

The trace on S of Green's third formula (8) exists and reads as

$$\gamma_S^+ \mathcal{R}_{\varepsilon} u(y) - \mathcal{V}_{\varepsilon}(T^+ u)(y) + \frac{1}{2} a(y) \gamma_S^+ u(y) + \mathcal{W}_{\varepsilon}(\gamma^+ u)(y) = \gamma_S^+ \mathcal{P}_{\varepsilon}(Au)(y), \quad \forall y \in S.$$
(13)

The following auxiliary lemma plays a crucial role in our analysis.

Lemma. Let ε be a fixed positive number and let $\Omega(y, \varepsilon)$ be the domain defined in (1). Let $g \in \widetilde{H}^0(\Omega)$ and

$$\int_{\Omega(y,\varepsilon)} \frac{1}{|x-y|} g(x) \, dx = 0, \quad \forall y \in \Omega.$$
(14)

Then g = 0 in Ω .

Now let us consider the Dirichlet problem for the operator $A(x, \partial)$ defined in (3): Find a function $u \in H^{1,0}(\Omega, A)$ such that

$$A(x,\partial_x)u = f \text{ in } \Omega, \quad f \in H^0(\Omega), \tag{15}$$

$$\gamma^+ u = \varphi_0 \text{ on } S, \qquad \varphi_0 \in H^{\frac{1}{2}}(S).$$
 (16)

It is a well known classical result that the Dirichlet problem (15)-(16) is uniquely solvable (see, e.g., [3]).

Substituting the data of the Dirichlet problem under consideration into Green's third formula (8) and into its trace formula (13) on S, we obtain the following system of localized boundary-domain integro-differential equations with respect to the unknown function u,

$$a u + \mathcal{R}_{\varepsilon} u - V_{\varepsilon}(T^+u) + W_{\varepsilon}(\gamma^+u) = \mathcal{P}_{\varepsilon}f \quad \text{in} \quad \Omega,$$
(17)

$$\gamma_S^+ \mathcal{R}_{\varepsilon} u - \mathcal{V}_{\varepsilon}(T^+ u) + \frac{1}{2} a(y) \varphi_0 + \mathcal{W}_{\varepsilon}(\gamma^+ u) = \gamma_S^+ \mathcal{P}_{\varepsilon}(f) \quad \text{on} \quad S,$$
(18)

where the traces of the densities in the potential type operators are taken on the integration surface $\partial \Omega(y,\varepsilon) = S(y,\varepsilon) \cup \Sigma_1(y,\varepsilon) \cup \ell(y,\varepsilon)$.

There holds the following equivalence theorem.

Theorem 1. Let $f \in H^0(\Omega)$ and $\varphi_0 \in H^{\frac{1}{2}}(\partial\Omega)$. The Dirichlet problem (15)–(16) and the system of localized boundary-domain integro-differential equations(17)–(18) are equivalent in the following sense:

(i) If $u \in H^{1,0}(\Omega, A)$ solves the Dirichlet problem (15)–(16), then u is a solution to the system of localized boundary-domain integro-differential equations (17)–(18), and vice versa,

(ii) If $u \in H^{1,0}(\Omega, A)$ solves the system of localized boundary domain integro-differential equations (17)–(18), then u is a solution to the Dirichlet problem (15)–(16).

This theorem implies the following existence result.

Theorem 2. Given $f \in H^0(\Omega)$ and $\varphi_0 \in H^{\frac{1}{2}}(\partial \Omega)$, the system of localized boundary-domain integro-differential equations (17)–(18) is uniquely solvable in the space $H^{1,0}(\Omega, A)$.

REFERENCES

- CHKADUA, O., MIKHAILOV, S.E., NATROSHVILI, D. Analysis of some localized boundary-domain integral equations. J. Integral Equations Appl., 21, 3 (2009), 405-445.
- CHKADUA, O., MIKHAILOV, S.E., NATROSHVILI, D. Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. *Integral Equations and Operator Theory*, 76, 4 (2013), 509-547.
- DAUTRAY, R., LIONS, J. it Mathematical Analysis and Numerical Methods for Science and Technology. volume 4: Integral Equations and Numerical Methods. Springer, Berlin-Heidelberg-New York, 1990.

Received 27.05.2019; revised 11.11.2019; accepted 15.12.2019.

Author(s) address(es):

Sveta Gorgisheli Georgian Technical University, Department of Mathematics M. Kostava str. 77, 0160 Tbilisi, Georgia E-mail: 18barabare@gmail.com