Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 33, 2019

GENERATING FUNCTIONS AND SPECTRAL ASYMPTOTICS OF SELF-SIMILAR FRACTAL STRINGS

Roland J. Etienne

Abstract. The geometric zeta function associated with a fractal string captures some of its essential features and in particular the intrinsic oscillations in its geometry and spectrum. Using a generating functions approach, we show how to obtain the asymptotic behaviour of the spectral counting function of self-similar fractal strings by elementary methods.

Keywords and phrases: Fractal strings, zeta functions, generating functions, Diophantine approximations.

AMS subject classification (2010): 28A80, 11M41, 11M26, 11K60, 05A15.

1 Introduction and definitions. In a previous paper [1], we investigated the modified one-dimensional Weyl-Berry conjecture using elementary methods and discussed the remarkable dichotomy between Minkowski measurable and non Minkowski measurable fractal strings. In this work, we propose a more detailed analysis of the important subclass of self-similar strings.

Let Ω be a bounded domain in \mathbb{R} with boundary $\delta\Omega$. We consider the eigenvalue problem:

$$-\Delta u = \lambda u,$$

with Dirichlet boundary conditions, i.e. $u|_{\delta\Omega} = 0$. Its set of eigenvalues, $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_k \leq \ldots$ - each eigenvalue being repeated according to (algebraic) multiplicity - is countable and the eigenvalue counting function may be defined as:

Definition 1. Eigenvalue counting function.

For a given positive λ , the eigenvalue counting function $N(\lambda)$ is defined as the number of eigenvalues less than λ :

$$N(\lambda) := \#\{(0 <)\lambda_j < \lambda\}.$$

Remark 1. Modified Weyl-Berry conjecture.

The modified Weyl-Berry conjecture for the asymptotics of the eigenvalues of the Laplacian on bounded open subsets of the line (fractal strings) states that:

$$N(\lambda) = \pi^{-1} \left|\Omega\right|_1 \lambda^{\frac{1}{2}} + \mathcal{O}(\lambda^{\frac{d}{2}}),$$

with $|\Omega|_1$ being the one-dimensional Lebesgue measure of Ω and $d_M \in [0, 1]$ the Minkowski dimension of the boundary.

Definition 2. Ordinary fractal strings.

An ordinary fractal string \mathcal{L} is a one-dimensional drum with fractal boundary $\delta \mathcal{L}$. In other words, it is a nonempty bounded open subset of \mathbb{R} , consisting of countably many pairwise disjoint open intervals, called lengths of the string. Here, the listing order of the lengths is irrelevant such that we may write $\mathcal{L} = \{\ell_k\}_{k=1}^{\infty} = \{l_n : l_n \text{ has multiplicity } \eta_n\}_{n=1}^{\infty}$.

Definition 3. Self-similar sets.

Given $N \ge 2$ contraction similitudes $\Phi_j : [0,1] \to [0,1]$, with scaling ratios $0 < r_j < 1$: $|\Phi_j(x) - \Phi_j(y)| = r_j |x - y|, \forall x, y \in [0,1]$. Then, the unique nonempty compact subset F of [0,1] satisfying the fixed point equation: $F = \bigcup_{j=1}^N \Phi_j(F)$ is called a self-similar set.

Definition 4. Open the set condition.

The system of maps $\Phi := \{\Phi_j : j = 1, ..., N\}$ satisfies the open set condition if there exists a nonempty open subset U of [0, 1], such that $\Phi_j(U) \cap \Phi_{j'}(U) = \emptyset$, for all $j \neq j'$, $j, j' \in \{1, ..., N\}$, and $\Phi_j(U) \subset U, \forall j \in \{1, ..., N\}$.

Definition 5. Self-similar fractal string.

A self-similar set F satisfying the open set condition determines a self-similar string \mathcal{L} as: $\mathcal{L} := [0,1] \setminus F$, with boundary $\delta \mathcal{L} = F$.

Definition 6. Lattice vs. Non-lattice.

Let Φ be a self-similar system with scaling ratios $(r_j)_{j=1}^N$ and attractor F. The associated string \mathcal{L} is said to be lattice if there exist 0 < r < 1 and N positive integers k_j , such that $gcd(k_1, \ldots, k_N) = 1$ and $r_j = r^{k_j}$ for $j = 1, \ldots, N$. Otherwise, the associated string \mathcal{L} is called non-lattice.

Definition 7. The geometric zeta-function.

The geometric zeta function of a fractal string \mathcal{L} is defined as:

$$\zeta_{\mathcal{L}}\left(s\right) := \sum_{n=1}^{\infty} \eta_n l_n^s,$$

for $Re(s) > d_M$, where d_M is the Minkowski dimension of the boundary $\delta \mathcal{L}$ of the string.

Remark 2. The geometric zeta-function of a self-similar string. For a self-similar string \mathcal{L} , the geometric zeta function is given by:

$$\zeta_{\mathcal{L}}(s) = \frac{1}{1 - \sum_{j=1}^{N} r_j^s},$$

where the r_i are the scaling ratios of the contraction similitudes.

Remark 3. The geometric zeta-function of a self-similar string as a generating function. Some values of the geometric zeta function of a string \mathcal{L} have a special interpretation. In particular, for s = 1, we have

$$\zeta_{\mathcal{L}}(1) = \sum_{n=1}^{\infty} \eta_n l_n = \frac{1}{1 - \sum_{j=1}^{N} r_j}$$

for a self-similar string, such that the right-hand side may be viewed as a generating function for the multiplicities of lengths.

Remark 4. The Minkowski dimension of a self-similar string.

The Minkowski dimension d_M of a self-similar string \mathcal{L} may be obtained by solving the Moran equation:

$$1 - \sum_{j=1}^{N} r_j^{d_M} = 0$$
, for d_M .

2 Results. The following propositions clearly demonstrate the difference in the spectral behaviour of lattice and non-lattice fractal strings. Although these results have already been obtained previously (see for example [2]) using the theory of complex dimensions, the approach proposed here appears more amenable and tractable.

Proposition 1. The eigenvalue counting function $N(\lambda)$ of a lattice self-similar string with $0 < d_M < 1$ never admits a monotonic asymptotic second term.

Proof. In the lattice case, the geometric zeta function at 1 is of the form:

$$\zeta_{\mathcal{L}}\left(1\right) = \frac{1}{1 - \sum_{j=1}^{N} a_j r^j}$$

with its Taylor-expansion given by:

$$\zeta_{\mathcal{L}}(1) = \sum_{k=1}^{\infty} \eta_k r^k = \sum_{k=1}^{\infty} \eta_k l_k,$$

where $l_k = r^k$. In general, the asymptotic growth of η_k is given by $\eta_k \approx \rho^{-k}$, where ρ is the smallest root of $1 - \sum_{j=1}^N a_j r^j = 0$ (Cauchy-Hadamard theorem). Thus,

$$\lim_{n \to \infty} \frac{\sum_{k=n}^{\infty} \eta_k l_k}{\sum_{k=n+1}^{\infty} \eta_k l_k} = \lim_{n \to \infty} \frac{\frac{r^n}{\rho^{n-1}(\rho-r)}}{\frac{r^{n+1}}{\rho^n(\rho-r)}} = \frac{\rho}{r}.$$

By Moran's equation, we have $\rho = r^{d_M}$, and therefore: $\frac{\rho}{r} = r^{d_M-1}$, as $r < \rho = r^{d_M}$, for 0 < r < 1 and $0 < d_m < 1$. Using now the criterion from [1], the proof is completed, as we always have $r^{d_M-1} \neq 1$ under these conditions.

Proposition 2. The eigenvalue counting function $N(\lambda)$ of a non-lattice self-similar string with $0 < d_M < 1$ always admits a monotonic asymptotic second term.

Proof. In [2], theorem 3.18, it has been established that every nonlattice string can be approximated by a sequence of lattice strings. For the sake of simplicity, but without loss of generality, we will here consider a non-lattice string with only two different scaling

ratios r_1, r_2 and weights a_1, a_2 , the results obtained will remain true in the general case. The geometric zeta function at 1 is then of the form:

$$\begin{aligned} \zeta_{\mathcal{L}}(1) &= \frac{1}{1 - a_1 r_1 - a_2 r_2} = \frac{1}{1 - a_1 r_1 - a_2 r_1^{\frac{\ln(r_2)}{\ln(r_1)}}} \\ &:= \frac{1}{1 - a_1 r_1 - a_2 r_1^{\gamma}}, \text{ with } \gamma := \frac{\ln(r_2)}{\ln(r_1)}. \end{aligned}$$

Using the Diophantine approximation for the exponent γ , i.e.: $\gamma = \lim_{n \to \infty} \frac{p_n}{q_n}$, where $(p_n, q_n) \in \mathbb{N}^2$ and the sequences $(p_n)_{n \in \mathbb{N}}$, resp. $(q_n)_{n \in \mathbb{N}}$ are strictly increasing towards infinity, we can write:

$$\zeta_{\mathcal{L}}(1) = \lim_{n \to \infty} \frac{1}{1 - a_1 r^{q_n} - a_2 r^{p_n}}, \text{ with } r := r_1^{\frac{1}{q_n}}.$$

Now, as $\lim_{n\to\infty} q_n = \infty$:

$$\lim_{n \to \infty} \frac{\sum_{k=n}^{\infty} \eta_k l_k}{\sum_{k=n+1}^{\infty} \eta_k l_k} = \lim_{n \to \infty} \frac{\frac{r^n}{\rho^{n-1}(\rho-r)}}{\frac{r^{n+1}}{\rho^n(\rho-r)}} = \frac{\rho}{r} = r^{d_M - 1} = r_1^{\frac{d_M - 1}{q_n}} = 1,$$

which completes the proof.

3 Conclusions. The asymptotic behaviour of the eigenvalue counting functions of self-similar strings was obtained by elementary methods. However, as the presence of oscillations is closely related to Riemann's conjecture ([3],[4]), it would be highly desirable to apply the approach proposed in [1] to fractal strings that are not self-similar. We expect to present several more extensive results on the subject in a subsequent paper.

REFERENCES

- ETIENNE, R.J. The One-Dimensional Modified Weyl-Berry Conjecture: An Elementary Approach. In: Jaiani, George, Natroshvili, David (eds.) Mathematics, Informatics, and Their Applications in Natural Sciences and Engineering. Springer Proceedings in Mathematics & Statistics, 276 (2019).
- LAPIDUS, M.L., VAN FRANKENHUIJSEN, M. Fractal Geometry, Complex Dimensions and Zeta Functions. Springer New York Heidelberg Dordrecht London, 2013.
- LAPIDUS, M.L., MAIER, H. The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc., 52, 2 (1995), 15-34.
- LAPIDUS, M.L., POMERANCE, C. The Riemann Zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. Lond. Math. Soc., 66, 3 (1993), 41-69.

Received 26.05.2019; revised 14.11.2019; accepted 17.12.2019.

Author(s) address(es):

Roland J. Etienne Lycée Edward Steichen & University of Siegen P.B. 9, L-9701 Clervaux, G.-D. Luxemburg. E-mail: roland.etienne@education.lu