Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 33, 2019

ON THE OF NILPOTENT AND SOLVABLE MR-GROUPS

Mikheil Amaglobeli

Abstract. In the present paper, the central series and series of commutants in MR-groups are introduced. Moreover, various definitions of nilpotency in this category are compared.

Keywords and phrases: Lyndon *R*-group, Hall *R*-group, *MR*-group, α -commutator, tenzor completion, *R*-commutant, nilpotent *MR*-group, solvable *MR*-group.

AMS subject classification (2010): 20B07.

The notion of exponential R-group (R is an arbitrary associative ring with identity 1) was introduced by Lyndon in [1]. Myasnikov and Remeslennikov introduced in [2] a new category of exponential R-groups (MR-groups) as a natural generalization of the notion of R-module to a noncommutative case. Recall the basic definitions (see [1, 2]).

Let $L = \langle \cdot, -1, e \rangle$ be the group language (signature); here, \cdot denotes the binary operation of multiplication, $^{-1}$ denotes the unary operation of inversion, and e is a constant symbol for the identity element of the group.

We enrich the group language to the language $\mathfrak{L}_{gr}^* = \mathfrak{L}_{gr} \cup \{f_\alpha(g) \mid \alpha \in R\}$, where $f_\alpha(g)$ is a unary algebraic operation.

Definition 1 ([1]). A Lyndon *R*-group is a set *G* on which operations, \cdot , $^{-1}$, *e* and $\{f_{\alpha}(g) \mid \alpha \in R\}$ are defined and the following axioms hold:

(i) the group axioms;

(ii) for all $g, h \in G$ and all elements $\alpha, \beta \in R$,

$$g^1 = g, \ g^0 = e, \ e^{\alpha} = e;$$
 (1)

$$g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, \quad g^{\alpha\beta} = (g^{\alpha})^{\beta}; \tag{2}$$

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h.$$
 (3)

For, brevity, in the formulas expressing the axioms, we write $f_{\alpha}(g)$ instead of g^{α} for $g \in G$ and $\alpha \in R$.

Let \mathfrak{L}_R denote the category of all Lyndon *R*-groups. Since the axioms given above are universal axioms of the language \mathfrak{L}_{gr}^* , it follows that \mathfrak{L}_R is a variety of algebraic systems in the language \mathfrak{L}_{gr}^* ; therefore, general theorems of universal algebra allow us to consider the varieties of *R*-groups, *R*-homomorphisms, *R*-isomorphisms, free *R*-groups, and so on.

MR-exponential groups. There exist Abelian Lyndon R-groups which are not R-modules (see [3], where the structure of a free Abelian R-group was studied in detail). The authors of [1] augmented Lyndon's axioms (quasi-identity):

$$(MR) \qquad \forall_{g,h\in G}, \ \alpha \in R \ [g,h] = e \Longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha} \ \left([g,h] = h^{-1}h^{-1}gh \right).$$
(4)

Definition 2 ([2]). An *MR*-group is a group *G* on which the operations g^{α} are defined for all $g \in G$ and $\alpha \in R$ so that axioms (1)–(4) hold.

Let \mathfrak{M}_R denote the class of all *R*-exponential groups with axioms (1)–(4). In honor of Myasnikov, *R*-groups with an extra axiom were called in [4] *MR*-groups (*R* is a ring). Clearly, this class is a quasi-variety in the language \mathfrak{L}_{gr}^* , and free *MR*-groups, *MR*-homomorphisms, and so on are defined; moreover, each Abelian *MR*-group is an *R*-module and vice versa.

Most of natural examples exponential group belongs to the class \mathfrak{M}_R . For example, unipotent groups over a field K of zero characteristic are MK-groups, pro-p-groups are exponential groups over the ring of p-adic integers, etc (see [2] for examples).

A systematic study of MR-group was initiated in [4–11]. Results obtained in these papers have turned out to be very useful in solving well-known problems of Tarski.

Below, following [2], we recall some definitions in the category of MR-groups. Let G be an MR-group.

Definition 3 ([2]). A homomorphism of *R*-groups $\varphi : G_1 \to G_2$ is called an *R*-homomorphism if $\varphi(g^{\alpha}) = \varphi(g)^{\alpha}, g \in G, \alpha \in R$.

Definition 4 ([2]). For $g, h \in G$ and $\alpha \in R$, the element $(g, h)_{\alpha} = h^{-\alpha}g^{-\alpha}(gh)^{\alpha}$ is called the α -commutator of the elements g and h.

It is obvious that for $\alpha = -1$ the α -commutator $(g, h)_{\alpha}$ coincides with the usual commutator $[h^{-1}, g^{-1}]$.

Clearly, $(gh)^{\alpha} = g^{\alpha}h^{\alpha}(g,h)_{\alpha}$ and $G \in \mathfrak{M}_R \iff ([g,h] = e \implies (g,h)_{\alpha} = e)$. This equivalence leads to the definition of an \mathfrak{M}_R -ideal.

Definition 5 ([2]). A normal *R*-subgroup $H \leq G$ is called an \mathfrak{M}_R -ideal if, $(g,h)_{\alpha} \in H$ for all $g \in G$, $h \in H$ and $\alpha \in R$.

Proposition. ([2])

- (i) If $\varphi : G_1 \to G_2$ is an *R*-homomorphism in the category \mathfrak{M}_R -groups, then ker φ is an \mathfrak{M}_R -ideal in *G*.
- (ii) If H is an \mathfrak{M}_R -ideal in G, then $G/H \in \mathfrak{M}_R$.

Nilpotent *R*-groups. Let c > 1 be a natural number. Denote by $\mathcal{N}_{c,R}$ the category of nilpotent *R*-groups of nilpotence *c* from the class \mathfrak{L}_R , i.e. of the *R*-groups where the identity

$$\forall x_1, \dots, x_{c+1} \ [x_1, \dots, x_{c+1}] = e$$

is fulfilled, and by $\mathcal{N}_{c,R}^0$ the category of nilpotent MR-groups of step c. The structure of R-groups without the axiom of choice (MR) is very complicated and that's why only the MR-group is studied in most of the works. In the rest of this paper only the MR-groups will be considered.

Let G be an arbitrary MR-group. Assume

$$(G,G)_R = \langle (g,h)_\alpha \mid g,h \in G, \alpha \in R \rangle_R$$

We will call a subgroup $(G, G)_R$ a *R*-commutant of the group *G*.

Theorem 1. For any MR-group G the following statements are true:

- (1) a *R*-commutant of *G* is a verbal *MR*-subgroup defined by the word $[x, y] = x^{-1}y^{-1}xy$;
- (2) a R-commutant is the smallest \mathfrak{M}_R -ideal by which the factor group is abelian.

For $G \in \mathfrak{M}_R$, we call a *R*-commutant $(G, G)_R$ the first *R*-commutant and denote it by $G^{(1,R)}$. A *R*-commutant of $G^{(1,R)}$ is called **the second** *R***-commutant** and denoted by $G^{(2,R)}$, and so on. There arises a decreasing series of *R*-commutants

$$G = G^{(0,R)} \ge G^{(1,R)} \ge \dots \ge G^{(n,R)} \ge \dots$$
(5)

Definition 6. An exponential MR-group G is called **solvable** of there exists a natural number n such that $G^{(n,R)} = e$.

By induction with respect to n it is easy to show that the ordinary n-th commutant $G^{(n)}$ is contained in $G^{(n,R)}$. Hence an n-step solvable group in the category \mathfrak{M}_R is n-step solvable in the category of groups.

Let us proceed to the definition of the lower central series in the category of power MR-groups. The first member of this series is the R-commutant of the group G which we denote by $G_{(1,R)}$. Assume that the *n*-th member of the lower central series $G_{(R,R)}$ has already been defined. Then $G_{(R+1,R)} = id([G, G_{(R,R)}])$, i.e. $G_{(R+1,R)}$ is the \mathfrak{M}_R -ideal generated by the reciprocal commutant of G and $G_{(R,R)}$. There arises the lower central series

$$G = G_{(0,R)} \ge G_{(1,R)} \ge \dots \ge G_{(R,R)} \ge \dots$$
 (6)

Definition 7. A lower MR-group will be called lower R-nilpotent if there exists a natural number n such that $G_{(R,R)} = e$. The smallest number n with such a property is called **the step of** R-nilpotence.

Since the ordinary member of the lower central series $G_{(R)}$ is contained in $G_{(R,R)}$, the *n*-step lower nilpotent group in the category \mathfrak{M}_R is a nilpotent group of step $\leq n$ in the category of groups. From the definition of series (5), (6) and the definition of a verbal MR-subgroup it directly follows that for any natural number n and ring R the groups $G^{(n,R)}$ and $G_{(n,R)}$ are verbal MR-subgroups. Hence there arise the following questions.

We denote by $\underline{\mathfrak{N}}_{n,R}$ the class of lower *R*-nilpotent groups of step *n*. We also introduce other definitions of nilpotence in the category of step *MR*-groups. For this, by induction with respect to *n* we define the notion of a simple $\overline{\alpha}$ -commutator of weight *n*, where $\overline{\alpha} = (\alpha_1, \ldots, \alpha_{n-1})$. If n = 2, then $\overline{\alpha} = (\alpha)$ is the above-defined α -commutator $(g_1, g_2)_{\alpha}$ of elements g_1, g_2 from *G*. Assume that for $n \geq 2$ the simple $\overline{\alpha}$ -commutators of weight *n* have already been defined. Then a simple $(\overline{\alpha}, \alpha_n)$ -commutator is an element $(x, g_n)_{\alpha_n}$, where x is a simple $\overline{\alpha}$ -commutator. Further, let $X = \{x_1, x_2, \ldots\}$ be the set of letters. Denote by W_n the set $W_n = \{(\cdots ((x_1, x_2)_{\alpha_1}, x_3)_{\alpha_2}, \ldots, x_{n+1})_{\alpha_n} : \alpha_1, \ldots, \alpha_n \in R\}$ of all simple $\overline{\alpha}$ -commutators of weight n + 1 of the letters x_1, \ldots, x_n . Denote by $\mathfrak{N}_{n,R}$ the group manifold defined by the set of R-words W_n . The groups of this manifold are called R-nilpotent MR-groups of nilpotence step n. We denote by $\overline{\mathfrak{N}}_{n,R}$ the manifold of R-groups defined by the word $v_n = [\cdots [[x_1, x_2], x_3], \ldots, x_{n+1}]$. The groups of this manifold are called are called upper nilpotent groups of step n. The corresponding verbal MR-subgroup is denoted by $\overline{\mathfrak{N}}_{n,R}$. We obviously have the inclusions $\underline{\mathfrak{N}}_{n,R} \subseteq \mathfrak{N}_{n,R}$. Let us clarify the nature of these inclusions for small values of n.

Theorem 2. For n = 1, 2, all the three definitions of nilpotence coincide.

Theorem 3. If $G \in \mathfrak{N}_{2,R}$, then its tensor completion $G^S \in \mathfrak{N}_{2,S}$.

REFERENCES

- 1. LYNDON, R.C. Groups with parametric exponents. Trans. Amer. Math. Soc., 96 (1960), 518-533.
- MYASNIKOV, A.G., REMESLENNIKOV V.N. Degree groups. I. Foundations of the theory and tensor completions (Russian). Sibirsk. Mat. Zh., 35, 5 (1994), 1106-1118; translation in Siberian Math. J., 35, 5 (1994), 986-996.
- 3. BAUMSLAG, G. Free abelian X-groups. Illinois J. Math., 30, 2 (1986), 235-245.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Free nilpotent *R*-groups of class 2 (Russian). Dokl. Akad. Nauk, 443, 4 (2012), 410-413; translation in Dokl. Math., 85, 2 (2012), 236-239.
- MYASNIKOV, A.G., REMESLENNIKOV, V.N. Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups. *Internat. J. Algebra Comput.*, 6, 6 (1996), 687-711.
- BAUMSLAG, G., MYASNIKOV, A., REMESLENNIKOV, V. Discriminating completions of hyperbolic groups. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata, 92 (2002), 115–143.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Extension of a centralizer in nilpotent groups (Russian). Sibirsk. Mat. Zh., 54, 1 (2013), 8-19.
- AMAGLOBELI, M., REMESLENNIKOV, V. Algorithmic problems for class-2 nilpotents MR-groups. Georgian Math. J., 22, 4 (2015), 441-449.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N, Foundations of the theory of varieties of nilpotent MR-groups. (Russian) Sibirsk. Mat. Zh., 57, 6 (2016), 1197-1207; translation in Sib. Math. J., 57, 6 (2016), 935-942.
- 10. AMAGLOBELI, M.G. Functor of tensor completion in categories exponential *MR*-groups (Russian). *Algebra & Logic*, **57**, 2 (2018), 137-149.
- 11. AMAGLOBELI, M. Exponential MR-groups: faithful R-completion. Dokl. Math., 99, 3 (2010), 33-35.

Received 30.05.2019; revised 20.11.2019; accepted 20.12.2019.

Author(s) address(es):

Mikheil Amaglobeli Faculty Exact and Natural Sciences of I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: mikheil.amaglobeli@tsu.ge