Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 32, 2018

ILL-POSED PROBLEMS AND ASSOCIATED WITH THEM SPACES OF ORBITS AND ORBITAL OPERATORS

Duglas Ugulava David Zarnadze

Abstract. The ill-posed equation Ku = f is considered, where $K : H \to H$ is a linear compact selfadjoint injective positive operator and H is a Hilbert space. The Hilbert space $D(K^{-n})$ of *n*-orbits of the operator K^{-1} is introduced taking into account the topology. We transfer the considered equation in this space and construct a linear central spline algorithm for approximate solution of transferred equation (Theorem 1). It is proved that the projective limit of the sequence of *n*-orbits spaces is the space of all orbits $D(K^{-\infty})$ in which the transferred equation becomes well posed.

Keywords and phrases: Ill-posed problem, space of all orbit, orbital operators.

AMS subject classification (2010): 43Q05, 45M55.

Let H be a separable Hilbert space with the norm $\|\cdot\|$, endowed with the inner product (\cdot, \cdot) , and let $K : H \to H$ be a compact, injective, selfadjoint, positive operator. The left inverse operator K^{-1} is not continuous. By an orbit of the operator K^{-1} at the point x a sequence $\operatorname{orb}(K^{-1}, x) := \{x, K^{-1}x, \cdots, K^{-n}x, \cdots\}$ is defined. Under a *n*-orbit of K^{-1} at the point x we mean a sequence $\operatorname{orb}_n(K^{-1}, x) := \{x, K^{-1}x, \cdots, K^{-n}x\}, n \in \mathbb{Z}_+$, where \mathbb{Z}_+ is the set of nonnegative whole numbers. We denote by $D(K^{-\infty})$ the space of all orbits of K^{-1} and by $D(K^{-n})$ the space of all *n*-orbits of K^{-1} . It is obvious that $D(K^{-\infty})$ is a closed subspace of Frechet-Hilbert space H^N and $D(K^{-n})$ is subspace of Hilbert space H^{n+1} with the product topology.

When $K^{-1} = A$, the operator $A : H \to H$ is a positive definite, selfadjoint operator on H and the well-known Frechet space $D(A^{\infty})$ coincides with the space $D(K^{-\infty})$. In [2] we have defined the operator A^{∞} by equality, which, in the above notations, has the form

$$A^{\infty}(\operatorname{orb}(A, x)) = \operatorname{orb}(A, Ax).$$

In [3] we call A^{∞} an orbital operator. Taking into account topologies of the Frechet space $D(A^{\infty})$ and countable product H^N of Hilbert spaces H, we get that A^{∞} coincides with the restriction of the operator $A^N : H^N \to H^N$ defined on H^N by equality $A^N\{x_n\} = \{Ax_n\}$ from the Frechet-Hilbert space H^N to $D(A^{\infty})$. The operator is also defined

$$K^{-\infty}(\operatorname{orb}(K^{-1}, u)) = \{K^{-1}u, K^{-2}u, \cdots, K^{-n}u, \cdots\} = \operatorname{orb}(K^{-1}, K^{-1}u),$$

 $K^{-\infty}$ is also called an orbital operator. It is known [2] that the operator $K^{-\infty}$ is continuous, positive definite and selfadjoint in the Frechet space $D(K^{-\infty})$ and admits the inverce one $(K^{-\infty})^{-1}$ which is also continuous in the Frechet space $D(K^{-\infty})$. Therefore,

the operator $K^{-\infty}$ is a topological isomorphism of the Frechet space $D(K^{-\infty})$ onto itself. Let us denote the operator $(K^{-\infty})^{-1}$ by K_{∞} i.e.

$$K_{\infty}(\operatorname{orb}(K^{-1}, u)) = \{Ku, u, K^{-1}u, \dots\} = \operatorname{orb}(K^{-1}, Ku).$$

It is easy to see that algebraically the restriction of the operator K on the set $D(K^{-\infty}) \subset H$ coincides with the operator K_{∞} . K_{∞} is also a topological isomorphism of the Frechet space $D(K^{-\infty})$ onto itself and $K_{\infty}u = f$ admits unique and stable solution, i.e. this equation is well-posed in $D(K^{-\infty})$. We have studied the problem of approximate solution of the equation $K_{\infty}u = f$ in $D(K^{-\infty})$ and have constructed a linear, central spline algorithm [1].

We use the terminology and notations mainly from [5]. We will compute S(f) for the solution operator of the equation Au = f.

Let $\{\varphi_k\}$ be an orthogonal sequence of eigenfunctions of the operator K with the corresponding sequence of eigenvalues $\{\lambda_k\}, k \in \mathbb{N}$. It is easy to see that $\{\varphi_k\}$ is a complete system in H. Then K has the form $Ku = \sum_{k=1}^{\infty} \lambda_k (\varphi_k, \varphi_k)^{-1} (u, \varphi_k) \varphi_k$, where $\lambda_k \to 0, \lambda_k > 0$.

The inverse of K^{-1} to the operator K is selfadjoint and has the form

$$K^{-1}x = \sum_{k=1}^{\infty} \lambda_k^{-1}(x,\varphi_k)(\varphi_k,\varphi_k)^{-1}\varphi_k .$$

The sequence λ_k^{-1} is unbounded and tends to infinity. Therefore, the selfadjoint operator K^{-1} has discrete spectrum ([6], p.98) and a dense image.

Let n be a fixed nonnegative whole number and let us consider elements of the space H to which we can apply the operator $K^{-n} = (K^{-1})^n$, where K^0 is the identite operator. It is possible to identify every element $x \in D(K^{-n})$ with the n-orbit of the operator K^{-1} at the point x, i.e. with $\operatorname{orb}_n(K^{-1}, x)$. We hope that this identification will not cause misunderstandings. In such identification the set $D(K^{-n})$ is exactly the space of n-orbits of the operator K^{-n} . We can turn this set into a prehilbert space with the help of the following inner product

$$(x,y)_n = (x,y) + (K^{-1}x, K^{-1}y) + \dots + (K^{-n}x, K^{-n}y), \ n \in \mathbb{Z}_+.$$
 (1)

According to (1), the norm of an element $x \in D(K^{-n})$ has the form

$$||x||_{n} = (||x||^{2} + ||K^{-1}x||^{2} + \dots + ||K^{-n}x||^{2})^{1/2}, \ n \in \mathbb{Z}_{+}.$$
(2)

It is easy to verify that if the operator K^{-1} is closed, then $D(K^{-n})$ is the Hilbert space.

Let us consider the equation

$$Ku = f, (3)$$

in the space $D(K^{-n})$, which, in general, is not correct. In view of the foregoing, the equation (3) in the space $D(K^{-n})$ actually has the form

$$K_n(\operatorname{orb}_n(K^{-1}, u)) = \operatorname{orb}_n(K^{-1}, f),$$
 (4)

where the operator $K_n: D(K^{-n}) \to D(K^{-n})$ is defined by the equality

$$K_n(\operatorname{orb}_n(K^{-1}, u)) = \operatorname{orb}_n(K^{-1}, Ku).$$

We will call K_n the *n*-orbital operator for the operator K.

It is well-known that the least squares solution u of the minimal norm of the operator equation $K_n u = f$, $f \in \text{Im}K_n \cup (\text{Im}K_n)^{\perp}$ is given by

$$u = \sum_{k=1}^{\infty} \lambda_k^{-1}(\varphi_k, \varphi_k)^{-1}(f, \varphi_k)\varphi_k, \ \lambda_k \to 0, \ \lambda_k > 0$$
(5)

and the set of the least squares solutions coincides with the set of solutions of normal equaton $K_n^* K_n u = K_n^* f$.

The operator K_n is symmetric and positive in the space $D(K^{-n})$. The inverse operator K_n^{-1} has the form

$$K_n^{-1}(\operatorname{orb}_n(K^{-1}, x)) = \operatorname{orb}_n(K^{-1}, K^{-1}x)$$
 (6)

and it is a symmetric and positive definite operator in the space $D(K^{-n})$.

Our goal is to build an algorithm for the approximate solution of the equation (4) in the space $D(K^{-n})$. For the construction of approximate solution U(f) we apply some information about the problem element f. Let y = I(f) be a nonadaptive computable information of the cardinality m, i.e.

$$y = I(f) = [L_1(f), \cdots, L_m(f)],$$
(7)

where L_1, \dots, L_m are linear functionals on the space H.

Let us construct an interpolating $y \in I(H)$ spline in the space $D(K^{-n})$. For this we consider the following spaces: the linear space F_1 consisting from elements of the space $D(K^{-n})$; $G = D(K^{-n})$ with the norm (2), the set of problem elements is F = $\{f \in F_1; ||T(f)||_n \leq 1\}$, where T is an identical operator from F_1 on $D(K^{-n})$ and X = $(D(K^{-n}), ||\cdot||_n)$. The solution operator S_n is K_n^{-1} , defined by equality (6). Let us assume that the information on $D(K^{-n})$ is given by (7), where $L_i(f) = (f, \varphi_i), i = 1, \cdots, m$. The interpolating y = I(f) spline σ if defined by the equality $||T(\sigma)||_n = \inf\{||T(z)||_n, z \in$ $I^{-1}(y)\}$. It has the form

$$\sigma_m(f) = \sigma_m(I(f)) = \sum_{k=1}^m \frac{(f, \varphi_k)}{(\varphi_k, \varphi_k)} \varphi_k$$
(8)

and is not depending on n.

To solve equation (4) by the Ritz method, it is necessary to consider the energetic space E_{K_n} of the operator K_n in the space $E = D(K^{-n})$. The inner product $[f_1, f_2]_n$ of elements f_1 f_2 of this energetic space is $(K_n f_1, f_2)_n$. The approximate solution obtained by Ritz method relatively to the system $\varphi_1, \varphi_2, \dots, \varphi_m$, has the form

$$u_m = \sum_{k=1}^m \frac{(f,\varphi_k)}{(\varphi_k,\varphi_k)\lambda_k} \varphi_k = K_n^{-1} \sum_{k=1}^m \frac{(f,\varphi_k)}{(\varphi_k,\varphi_k)} \varphi_k = S_n \sigma_m.$$
(9)

This means that $U(f) = u_m$ is a spline algorithm. Analogously to ([5], p.97), we can prove also that the algorithm (9) is central.

Let us assume that the equation (4) admits a generalized solution with the finite energy u_0 in the energetic space E_{K_n} . It is proved in ([6], ch.5, §34) that the approximate solution u_m converges to u_0 in E_{K_n} . We have proved that the above notation is valid.

Theorem 1. Let H be a Hilbert space, let K be a compact, injective selfadjoint, positive operator in H and let the operator K^{-1} be closed. We will still require that the set T(Ker I) is closed and the radius of information I is finite. Then the algorithm (9) is a linear central spline algorithm for the approximate solution of the equation $K_n u = f$ in the space $D(K^{-n})$. Besides, if in the energetic space of the operator K_n there exists the generalized solution u_0 with the finite energy, the sequence of the approximative solutions converges to u_0 in the energetic space E_{K_n} .

REFERENCES

- 1. ZARNADZE, D.N., UGULAVA, D.K. On a linear generalized central spline algorithm of computerized tomography. *Proceedings of A. Razmadze Math. Institute.*, **168** (2015), 129-148.
- 2. ZARNADZE, D.N., TSOTNIASHVILI, S.A. Selfadjoint operators and generalized central algorithms in Frechet spaces. *Georgian Math. Journal*, **13**, 2 (2006), 363-382.
- ZARNADZE, D.N., TSOTNIASHVILI, S.A. On calculation of the inverse of multidimensional harmonic oscillator on Schwartz space. The South-Caucasus Computing and Technology Workshop SCCTW', 2016 (04-07 October 2016)-CERN Indico. New report. atlas 6101, 7p.
- 4. TIKHONOV, A.N. On stability of inverse problems. Soviet Math. doklady, 39, 5 (1943), 195-198.
- 5. TRAUB, J.F., WOJNIAKOWSKI, H., WASILKOWSKI, G. Information based complexity. *New York, Acad. Press.*, 1986.
- 6. MICHLIN, S. Variational methods in mathematical physics (Russian), Nauka, Moskow, 1970.

Received 14.05.2018; revised 17.09.2018; accepted 16.12.2018.

Author(s) address(es):

Duglas Ugulava N. Muskhelishvili Institute of Computational Mathematics, Georgian Technical University G. Peradze str. 4, 0159 Tbilisi, Georgia E-mail: duglasugu@yahoo.com

David Zarnadze N. Muskhelishvili Institute of Computational Mathematics, Georgian Technical University G. Peradze str. 4, 0159 Tbilisi, Georgia E-mail: zarnadzedavid@yahoo.com