
Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 32, 2018

ILL-POSED PROBLEMS AND ASSOCIATED WITH THEM SPACES OF ORBITS
AND ORBITAL OPERATORS

Duglas Ugulava David Zarnadze

Abstract. The ill-posed equation Ku = f is considered, where K : H → H is a linear

compact selfadjoint injective positive operator and H is a Hilbert space. The Hilbert space

D(K−n) of n-orbits of the operator K−1 is introduced taking into account the topology. We

transfer the considered equation in this space and construct a linear central spline algorithm for

approximate solution of transferred equation (Theorem 1). It is proved that the projective limit

of the sequence of n-orbits spaces is the space of all orbits D(K−∞) in which the transferred

equation becomes well posed.
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Let H be a separable Hilbert space with the norm ∥·∥, endowed with the inner product
(·, ·), and let K : H → H be a compact, injective, selfadjoint, positive operator. The left
inverse operator K−1 is not continuous. By an orbit of the operator K−1 at the point x a
sequence orb(K−1, x) := {x,K−1x, · · · , K−nx, · · · } is defined. Under a n-orbit of K−1 at
the point x we mean a sequence orbn(K

−1, x) := {x,K−1x, · · · , K−nx}, n ∈ Z+, where
Z+ is the set of nonnegative whole numbers. We denote by D(K−∞) the space of all orbits
of K−1 and by D(K−n) the space of all n-orbits of K−1. It is obvious that D(K−∞) is
a closed subspace of Frechet-Hilbert space HN and D(K−n) is subspace of Hilbert space
Hn+1 with the product topology.

When K−1 = A, the operator A : H → H is a positive definite, selfadjoint operator
on H and the well-known Frechet space D(A∞) coincides with the space D(K−∞). In [2]
we have defined the operator A∞ by equality, which, in the above notations, has the form

A∞(orb(A, x)) = orb(A,Ax).

In [3] we call A∞ an orbital operator. Taking into account topologies of the Frechet space
D(A∞) and countable product HN of Hilbert spaces H, we get that A∞ coincides with the
restriction of the operator AN : HN → HN defined on HN by equality AN{xn} = {Axn}
from the Frechet-Hilbert space HN to D(A∞). The operator is also defined

K−∞(orb(K−1, u)) = {K−1u,K−2u, · · · , K−nu, · · · } = orb(K−1, K−1u),

K−∞ is also called an orbital operator. It is known [2] that the operator K−∞ is con-
tinuous, positive definite and selfadjoint in the Frechet space D(K−∞) and admits the
inverce one (K−∞)−1 which is also continuous in the Frechet space D(K−∞). Therefore,
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the operator K−∞ is a topological isomorphism of the Frechet space D(K−∞) onto itself.
Let us denote the operator (K−∞)−1 by K∞ i.e.

K∞(orb(K−1, u)) = {Ku, u,K−1u, · · · } = orb(K−1, Ku).

It is easy to see that algebraically the restriction of the operator K on the set D(K−∞) ⊂
H coincides with the operator K∞. K∞ is also a topological isomorphism of the Frechet
space D(K−∞) onto itself and K∞u = f admits unique and stable solution, i.e. this
equation is well-posed in D(K−∞). We have studied the problem of approximate solution
of the equation K∞u = f in D(K−∞) and have constructed a linear, central spline
algorithm [1].

We use the terminology and notations mainly from [5]. We will compute S(f) for the
solution operator of the equation Au = f .

Let {φk} be an orthogonal sequence of eigenfunctions of the operator K with the
corresponding sequence of eigenvalues {λk}, k ∈ N. It is easy to see that {φk} is a
complete system in H. Then K has the form Ku =

∑∞
k=1 λk(φk, φk)

−1 (u, φk)φk, where
λk → 0, λk > 0.

The inverse of K−1 to the operator K is selfadjoint and has the form

K−1x =
∞∑
k=1

λ−1
k (x, φk)(φk, φk)

−1φk .

The sequence λ−1
k is unbounded and tends to infinity. Therefore, the selfadjoint oper-

ator K−1 has discrete spectrum ([6], p.98) and a dense image.
Let n be a fixed nonnegative whole number and let us consider elements of the space

H to which we can apply the operator K−n = (K−1)n, where K0 is the identite operator.
It is possible to idetify every element x ∈ D(K−n) with the n-orbit of the operator K−1

at the point x, i.e. with orbn(K
−1, x). We hope that this identification will not cause

misunderstandings. In such identification the set D(K−n) is exactly the space of n-orbits
of the operator K−n. We can turn this set into a prehilbert space with the help of the
following inner product

(x, y)n = (x, y) + (K−1x,K−1y) + · · ·+ (K−nx,K−ny), n ∈ Z+. (1)

According to (1), the norm of an element x ∈ D(K−n) has the form

∥x∥n = (∥x∥2 + ∥K−1x∥2 + · · ·+ ∥K−nx∥2)1/2, n ∈ Z+. (2)

It is easy to verify that if the operator K−1 is closed, then D(K−n) is the Hilbert space.
Let us consider the equation

Ku = f, (3)

in the space D(K−n), which, in general, is not correct. In view of the foregoing, the
equation (3) in the space D(K−n) actually has the form

Kn(orbn(K
−1, u)) = orbn(K

−1, f), (4)



ILL-Posed Problems and Associated with them Spaces of Orbits ... 81

where the operator Kn : D(K−n) → D(K−n) is defined by the equality

Kn(orbn(K
−1, u)) = orbn(K

−1, Ku).

We will call Kn the n-orbital operator for the operator K.
It is well-known that the least squares solution u of the minimal norm of the operator

equation Knu = f, f ∈ ImKn ∪ (ImKn)
⊥ is given by

u =
∞∑
k=1

λ−1
k (φk, φk)

−1(f, φk)φk, λk → 0, λk > 0 (5)

and the set of the least squares solutions coincides with the set of solutions of normal
equaton K∗

nKnu = K∗
nf .

The operatorKn is symmetric and positive in the space D(K−n). The inverse operator
K−1

n has the form
K−1

n (orbn(K
−1, x)) = orbn(K

−1, K−1x) (6)

and it is a symmetric and positive definite operator in the space D(K−n).
Our goal is to build an algorithm for the approximate solution of the equation (4) in

the space D(K−n). For the construction of approximate solution U(f) we apply some
information about the problem element f . Let y = I(f) be a nonadaptive computable
information of the cardinality m, i.e.

y = I(f) = [L1(f), · · · , Lm(f)], (7)

where L1, · · · , Lm are linear functionals on the space H.
Let us construct an interpolating y ∈ I(H) spline in the space D(K−n). For this

we consider the following spaces: the linear space F1 consisting from elements of the
space D(K−n); G = D(K−n) with the norm (2), the set of problem elements is F =
{f ∈ F1; ||T (f)||n ≤ 1}, where T is an identical operator from F1 on D(K−n) and X =
(D(K−n), || · ||n). The solution operator Sn is K−1

n , defined by equality (6). Let us assume
that the information on D(K−n) is given by (7), where Li(f) = (f, φi), i = 1, · · · ,m. The
interpolating y = I(f) spline σ if defined by the equality ||T (σ)||n = inf{||T (z)||n, z ∈
I−1(y)}. It has the form

σm(f) = σm(I(f)) =
m∑
k=1

(f, φk)

(φk, φk)
φk (8)

and is not depending on n.
To solve equation (4) by the Ritz method, it is necessary to consider the energetic

space EKn of the operator Kn in the space E = D(K−n). The inner product [f1, f2]n of
elements f1 f2 of this energetic space is (Knf1, f2)n. The approximate solution obtained
by Ritz method relatively to the system φ1, φ2, · · · , φm, has the form

um =
m∑
k=1

(f, φk)

(φk, φk)λk

φk = K−1
n

m∑
k=1

(f, φk)

(φk, φk)
φk = Snσm. (9)
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This means that U(f) = um is a spline algorithm. Analogously to ([5], p.97), we can
prove also that the algorithm (9) is central.

Let us assume that the equation (4) admits a generalized solution with the finite
energy u0 in the energetic space EKn . It is proved in ([6], ch.5, §34) that the approximate
solution um converges to u0 in EKn . We have proved that the above notation is valid.

Theorem 1. Let H be a Hilbert space, let K be a compact, injective selfadjoint, positive
operator in H and let the operator K−1 be closed. We will still require that the set
T (KerI) is closed and the radius of information I is finite. Then the algorithm (9) is a
linear central spline algorithm for the approximate solution of the equation Knu = f in
the space D(K−n). Besides, if in the energetic space of the operator Kn there exists the
generalized solution u0 with the finite energy, the sequence of the approximative solutions
converges to u0 in the energetic space EKn.
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