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Abstract. The aim of this paper is to construct the continuous solution of the nonhomogeneous
linear equation corresponding to the characteristic equation of the multivelocity transport theory
in the isotropic case.
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Consider the following nonhomogeneous linear integral equation
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where the parameter v is any point of the plane f(u, E) is a continuous function satisfying
H* conditions [1] with respect to u. Corresponding to this equation homogeneous equation
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is the characteristic equation of the multi-velocity transport theory [2]. For this equation
we can formulate the following results:
(a) There are two discrete eigenvalues £ ,defined from the equation
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(here (¢ = Ey — By < 1) and regular eigenfunctions
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(b) The continuum singular eigenfunctions
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The usefulness of these functions arises from the facts that the set of eigenfunctions
{040} U {d, )} is orthogonal and complete. This can be stated in the form of the
following theorems (cf. [2,3]):

Theorem 1.
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Theorem 2. The arbitrary continuous function ¥(u, E) defined in —1 < p <1, E; <
E < E, and satisfying H* conditions with respect to u, can be expressed in the form
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Let 1, (1, E) be a solution of equation (1). From this theorem it can represented in
the form
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Substituting this expression in equation (1) we obtain
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Using Theorem 1, we obtain
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Thus the following theorem is correct

Theorem 3. If +vy€{vy} U (—1,1) equation (1) has only one continuous solution, sat-
isfying conditions H* with respect to p and it can be represented in the form
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