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Abstract. In the present work the question of representation of Brownian integral functionals

in the form of Ito‘s stochastic integral with the explicit construction of integrand is studied (the

existence of representation was studied by Clark in 1970). The considered class of functionals

includes a case stochastically nonsmooth functionals and therefore it is impossible to use the well-

known Clark-Ocone formula (1984). Besides, the considered class includes functionals for which

even the conditional mathematical expectation isn’t stochastically smooth and, consequently,

neither our generalization of the Clark-Ocone formula (2017) is applicable to them.
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1 Introduction and preliminaries. In the theory of stochastic processes, the
representation of functionals of Brownian motion by stochastic integrals, states that a
functional that is measurable with respect to the filtration generated by a Brownian
motion can be written in terms of Ito’s stochastic integral with respect to this Brownian
motion. The theorem only asserts the existence of the representation and does not help
to find it explicitly.

It is possible in many cases to determine the form of the representation using Malliavin
calculus, if a functional is Malliavin differentiable. We consider nonsmooth (in Malliavin
sense) functionals and have developed some methods of obtaining of constructive martin-
gale representation theorems. The obtained results can be used to establish the existence
of a hedging strategy in various European Options with corresponding payoff functions.

The first proof of the martingale representation theorem was implicitly provided by
Ito (1951) himself. This theorem states that any square-integrable Brownian functional
is equal to a stochastic integral with respect to Brownian motion. Many years later,
Dellacherie (1974) gave a simple new proof of Ito’s theorem using Hilbert space techniques.

Many other articles were written afterward on this problem and its applications but
one of the pioneer work on explicit descriptions of the integrand is certainly the one
by Clark. One important property of the Ito stochastic integral: if adapted process
f ∈ L2([0, T ]× Ω) then the process ξt =

∫ t

0
f(s, ω)dBs(ω) is a martingale with respect to

the filtration {ℑB
t }. On the other hand, according to the well-known Clark formula (see

[1]), if F is a square integrable ℑB
T -measurable random variable, then there exist a square
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integrable ℑB
t -adapted random process φ(t, ω) such that

F = EF +

∫ T

0

φ(t, ω)dBt(ω).

It should be noted that finding an explicit expression for φ(t, ω) is a very difficult prob-
lem. In this direction, one general result, called Clark-Ocone formula (see [2]), is known
according to which φ(t, ω) = E[DB

t F |ℑB
t ], where D

B
t is the so called Malliavin stochastic

derivative.
Those of Haussmann (1979), Ocone (1984), Ocone and Karatzas (1991) and Karatzas,

Ocone and Li (1991) were also particularly significant. A different method for finding the
process φ(t, ω) was proposed by Shiryaev, Yor and Graversen (2003, 2006), which was
based on the Ito (generalized) formula and the Levy theorem for the Levy martingale
Mt = E[F |ℑB

t ] associated with F : let MT = sup0≤t≤T Bt, then the following stochastic
integral representation holds

MT = EMT + 2

∫ T

0

[
1− Φ

(
Mt −Bt√

T − t

)]
dBt.

later on, using the Clark-Ocone formula, Renaud and Remillard (2006) have estab-
lished explicit martingale representations for path-dependent Brownian functionals. Let
us define Bθ

t = Bt + θt; mθ
t = inf0≤s≤t B

θ
s ; M

θ
t = sup0≤s≤t B

θ
s ; mt = m0

t ; Mt = M0
t ;

Div(G) = ∂xG + ∂yG + ∂zG; Divx,y(G) = ∂xG + ∂yG; Divx,z(G) = ∂xG + ∂zG; for
b < a < c, b < 0, c > 0, and τ = T − t :

f(a, b, c; t) = e−
1
2
θ2τE[DivG(Bτ + a,mτ + a,Mτ + a)eθBτ I{mτ≤b−a,c−a≤Mτ}

+Divx,yG(Bτ + a,mτ + a, c)eθBτ I{mτ≤b−a,Mτ≤c−a}

+Divx,zG(Bτ + a, b,Mτ + a)eθBτ I{b−a≤mτ ,c−a≤Mτ}

+∂xG(Bτ + a, b, c)eθBτ I{b−a≤mτ ,Mτ≤c−a}].

If G : R3 −→ R is a continuously differentiable function with bounded partial derivatives
or a Lipschitz function, then the Brownian functional X = G(Bθ

T ,m
θ
T ,M

θ
T ) admits the

following martingale representation:

X = EX +

∫ T

0

f(Bθ
t ,m

θ
t ,M

θ
t ; t)dBt.

2 Main result. In all cases described above investigated functionals, were stochas-
tically (in Malliavin sense) smooth. We study the task of stochastic integral representa-
tion of stochastically nonsmooth functional. In particular, we developed the method of
obtaining integral representation for some type functionals using the Trotter-Meyer Theo-
rem which establishes the relation between predictable square variation of semimartingale
and its local time. Moreover, in [3] we consider the path-dependent Wiener functional
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F = (WT −K)−I{ min
0≤t≤T

Wt≤c}, which is also not stochastically smooth. For this functional

the stochastic integral representation formula with an explicit form of integrand is ob-
tained. Note that this functional is a typical example of payoff function for so called
European barrier1 and lookback2 Options. Hence, obtained there stochastic integral rep-
resentation formula could be used for calculating the explicit hedging portfolio of such
barrier and lookback option.

It has turned out that the requirement of smoothness of functional can be weakened
by the requirement of smoothness only of its conditional mathematical expectation. We
(with prof. O. Glonti, 2014) considered Brownian functionals which are not stochasti-
cally differentiable. The considered class of functionals includes a case the stochastically
nonsmooth functionals and therefore it is impossible to use the well-known Clark-Ocone
formula. Besides, the considered class includes functionals for which even the conditional
mathematical expectation isn’t stochastically smooth and, consequently, neither our gen-
eralization of the Clark-Ocone formula (see [4]) is applicable to them. In particular,
we generalized the Clark-Ocone formula in case, when functional is not stochastically
smooth, but its conditional mathematical expectation is stochastically differentiable and
established the method of finding the integrand.

It is clear that there are also such functionals which don’t satisfy even the weakened
conditions, i.e. the nonsmooth functionals whose conditional mathematical expectations is
not stochastically differentiable too (see, for example, [5]). In particular, to such functional

belongs the integral type functional
∫ T

0
us(ω)ds with nonsmooth integrand us(ω).

Remark. It is well-known that if us(ω) ∈ DB
2,1 for all s, then (see [6])

∫ T

0
us(ω)ds ∈ DB

2,1

and Dt{
∫ T

0
us(ω)ds} =

∫ T

0
Dtus(ω)ds. But if us(ω) is not differentiable in the Malliavin

sense, then the Lebesgue average (with respect to ds) is not differentiable in the Malliavin
sense either.

Indeed, in this case the conditional mathematical expectation is not stochastically
smooth, because we have:

E

[∫ T

0

us(ω)ds|ℑt

]
=

∫ t

0

us(ω)ds+

∫ T

t

E[us(ω)|ℑt]ds,

where the first summand (integral) is analogous that the initial integral and therefore it
is not Malliavin differentiable, but the second summand is differentiable in the Malliavin
sense when us satisfied our weakened condition (if E[us(ω)|ℑt] ∈ DB

2,1 for almost all s and
E[us(ω)|ℑt] is Lebesgue integrable for a.a. ω, then∫ T

t

E[us(ω)|ℑt]ds ∈ DB
2,1

)
.

1The barrier option is either nullified, activated or exercised when the underlying asset price breaches
a barrier during the life of the option.

2The payoff of a lookback option depends on the minimum or maximum price of the underlying asset
attained during certain period of the life of the option.
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We will consider the Brownian function of integral type F =
∫ T

0
h(Bt)dt. We introduce

the notation

V (t, x) := E

[∫ T

t

h(Bs)ds|Bt = x

]
.

Theorem. If the deterministic function V (t, x) satisfies the requirements of the general-
ized Ito theorem, then the following stochastic integral representation is fulfilled∫ T

0

h(Bt)dt = E

[∫ T

0

h(Bt)dt

]
+

∫ T

0

V
′

x(t, Bt)dBt.

Corollary. The following stochastic integral representation is fulfilled∫ T

0

I{c1t≤Bt≤c2t }dt =

∫ T

0

[
Φ
(
x/

√
t
)] ∣∣∣x=c2t

x=c1t

dt−
∫ T

0

(∫ T

t

1

s− t
φ
( x−Bt
√
u− t

)∣∣∣x=c2t

x=c1t

ds
)
dBt.
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