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We say that we find New Physics (NP) when either we find a phenomenon which
is forbidden by standard model (of elementary particles) (SM) in principal - this is the
qualitative level of NP - or we find a significant deviation between precision calculations
in SM of an observable quantity and a corresponding experimental value.

In the Universe, matter has manly two geometric structures, homogeneous, and hier-
archical. The homogeneous structures are naturally described by real numbers with an
infinite number of digits in the fractional part and usual archimedean metrics. The hier-
archical structures are described with p-adic numbers with an infinite number of digits in
the integer part and non-archimedean metrics [1]. A discrete, finite, regularized, version
of the homogenous structures are homogeneous lattices with constant steps and distance
rising as arithmetic progression. The discrete version of the hierarchical structures is
hierarchical lattice-tree with scale rising in geometric progression.There is an opinion
that present day theoretical physics needs (almost) all mathematics, and the progress of
modern mathematics is stimulated by fundamental problems of theoretical physics.

Qvelementary particles. Let us consider the following formula

1

1− x
= (1 + x)(1 + x2)(1 + x4)..., |x| < 1. (1)

which can be proved as

pk ≡ (1 + x)(1 + x2)(1 + x4)...(1 + x2k) =
1− x2(k+1)

1− x
, lim

k→∞
pk = 1/(1− x). (2)

The formula (1) remind us the boson and fermion statistical sums

Zb(ω) =

√
x

1− x
, Zf (ω) =

1 + x√
x

, x = exp (−βω) (3)

and can be transformed in the following relation

Zb(ω) = Zf (ω)Zf (2ω)Zf (4ω)... (4)
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Indeed,

Zb(ω) =

√
x

1− x
= xaZf (ω)Zf (2ω)Zf (4ω)...,

a = 1 + (1 + 2 + 22 + ...) = 1 +
1

1− 2
= 0, |2|2 = 1/2 < 1. (5)

By the way we have an extra bonus! We see that the fermi content of the boson wears the
p-adic sense. The prime p = 2, in this case. Also, the vacuum energy of the oscillators
wear p-adic sense.

What about other primes p? For the finite fields,

zn(p) = exp(2πin/p), n = 0, 1, ..., p− 1,
∑
n

zn = 0,

Zp(β) =

p−1∑
n=1

exp (−βEn/~), En = 2π~(n+ a),

Zp(−i/p) = 0, p = 2, 3, 5, ...13...29...137... (6)

In polynomial approximation of a function f(x) ≃ PN(x) = a0 + a1x+ ...+ aNx
N ,

a0 + a1x0 + a2x
2
0 + ...+ aNx

N
0 = f(x0) = f0,

a0 + a1x1 + a2x
2
1 + ...+ aNx

N
1 = f(x1) = f1,

...,
a0 + a1x1 + a2x

2
N + ...+ aNx

N
N = f(xN) = fN , (7)

the coefficients an, n = 0, 1, ..., N are defined as solutions of the linear system of equations

V A = F, AT = (a0, a1, ..., aN), F T = (f0, f1, ..., fN),

V =


1 x0 x2

0 ... xN
0

1 x1 x2
1 ... xN

1

1 x2 x2
2 ... xN

2

. . . . .
1 xN x2

N ... xN
N

 (8)

Determinant of the Vandermonde matrix detV = ∆N =
∏

N≥m>n≥0(xm − xn), (∆0 = 1,
by definition). Indeed,

∆1 = x1 − x0, ∆2 = det

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

 = det

 1 x0 x2
0

0 x1 − x0 x2
1 − x2

0

0 x2 − x0 x2
2 − x2

0


= (x1 − x0)(x2 − x0)det

(
1 x1 + x0

1 x2 + x0

)
= (x2 − x1)(x2 − x0)(x1 − x0),

∆N = (xN − xN−1)...(xN − x0)∆N−1 =
∏

1≤n≤N

Zn,

Zn = (xn − xn−1)...(xn − x0) (9)
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There are two exceptional (simplest) case for discrete values of x: when xn = pn, n =
0, 1, 2, ..., N, and xn = x0 + nh, n = 0, 1, 2, ..., N.

In the first, geometric progression, case

Zn = (pn − pn−1)(pn−1 − pn−2)...(pn − 1)

= p(1+2+...+n−1)(p− 1)n
pn − 1

p− 1

pn−1 − 1

p− 1
...
p− 1

p− 1

= pn(n−1)/2(p− 1)n[n]p!, [n]p =
pn − 1

p− 1
, ∆1 = Z1 = (p− 1),

∆2 = (p2 − p)(p2 − 1)(p− 1) = p(p− 1)3(p+ 1)
= Z2Z1 = p(p− 1)2(p+ 1)(p− 1),

∆N =
∏

1≤n≤N

Zn = pa(p− 1)b
∏

1≤n≤N

[n]p!, (10)

a =
1

2

N∑
0

n(n− 1) =
1

2
(

N∑
0

xn)(2)|x=1 =
1

2

(1 + ε)N+1 − 1

ϵ
|ε=0

=
1

2
(N + 1 +

(N + 1)N

2
ε+

(N + 1)N(N − 1)

3!
ε2 + ...)(2)|ε=0

=
(N + 1)N(N − 1)

6
,

b =
N∑
0

n = N(N + 1)/2, ∆2 = p(p− 1)3(p+ 1), a = 1, b = 3. (11)

For p ≫ 1,

[n]p ≃ pn−1, [n]p! ≃ pn(n−1)/2,

∆N ≃ p2a+b = pc, c =
N(N + 1/2)(N + 1)

3
=

N∑
1

n2,

∆1 ≃ p, ∆2 ≃ p5. (12)

For p ≪ 1,∆N ≃ (−1)bpa, a = N(N2−1)/6, b = N(N +1)/2, [n]p ≃ 1, ∆1 ≃ −1, ∆2 ≃
−p. Having expression for ∆N in p, it is easy to obtain corresponding expression in
arithmetic progression case by putting p = 1 + h : ∆N(h) = hb

∏N
1 n!, b = N(N +

1)/2,∆2 = 2h3. We obtain the same result by direct calculation: Zn = h× 2h× ...×nh =
hnn!, ∆N(h) =

∏
Zn.

The Riemann zeta function ζ(s) is defined for complex s = σ + it. All complex zeros,
s = α+ iβ, lie in the critical stripe 0 < σ < 1, symmetrically with respect to the real axe
and critical line σ = 1/2. So it is enough to investigate zeros with α ≤ 1/2 and β > 0.
These zeros are of three types, with small, intermediate and big ordinates. The Riemann
hypothesis states that the (non-trivial) complex zeros of ζ(s) lie on the critical line
σ = 1/2. The Riemann hypothesis (RH) is a central problem in Pure Mathematics due
to its connection with Number theory and other branches of Mathematics and Physics.
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Let us consider the following finite approximation of the Riemann zeta function

ζN(s) =
N∑

n=1

n−s =
1

Γ(s)

∫ ∞

0

dtts−1 e
−t − e−(N+1)t

1− e−t
= ζ(s)−∆N(s), Re s > 1

ζ(s) =
1

Γ(s)

∫ ∞

0

dt
ts−1

et − 1
, ∆N(s) =

1

Γ(s)

∫ ∞

0

dt
ts−1e−Nt

et − 1
(13)

Another formula, which can be used on the critical line, is

ζ(s) = (1− 21−s)−1
∑
n≥1

(−1)n+1n−s =
1

1− 21−s

1

Γ(s)

∫ ∞

0

ts−1dt

et + 1
, Re s > 0. (14)

Corresponding finite approximation of the Riemann zeta function is

ζN(s) = (1− 21−s)−1

N∑
n=1

(−1)n−1n−s

=
1

1− 21−s

1

Γ(s)

∫ ∞

0

ts−1(1− (−e−t)N)dt

et + 1
= ζ(s)−∆N(s),

∆N(s) =
1

Γ(s)

∫ ∞

0

dt
ts−1(−e−t)N)

et + 1
∼ ±N−s (15)

at a (nontrivial) zero of the zeta function, s0, ζN(s0) = −∆N(s0). In the integral form,
dependence on N is analytic and we can consider any complex valued N.

It is interesting to see dependence (evolution) of zeros on N. For the simplest nontrivial
integer N = 2, ζ2(s) = (1 − 21−s)−1(1 − 2−s), we have zeros at sn = 2πin/ ln 2, n =
0,±1,±2, ..., 2π/ ln 2 = 9.06. In the interval Imsn ∈ (0, 100) we have 10 nontrivial zeros.
The first nontrivial zero of the zeta function, by Mathematica, is: s1 = 1/2 + i14.1347.
The last zero in the interval Imsn ∈ (0, 100) is: s29 = 1/2 + i98.8312.
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