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ON THE GENERALIZED SOLUTION OF SOME NONLOCAL BOUNDARY
PROBLEMS
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Abstract. For the simplest nonlocal boundary problem, the concept of generalized solution is

introduced. The theorem on the continuous dependence of the solution from the right side of

the equation and the note on the approximation of the solution is given.
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Let us consider the nonlocal boundary problem [1]: find the function, satisfying the
problem for the given right side f(x, y):

−△υ(x, y) + λυ(x, y) = f(x, y), (x, y) ∈ G,

υ(x, y)|Γ = 0,

υ(x, y)|Γ−ξ = υ(x, y)|Γ0 ,

(1)

where λ ≥ 0,Γ = ∂G\Γ0 and ξ ∈]0, a[. By ∂G boundary of the rectangle G = {(x, y)|−a <
x < 0, 0 < y < b} is denoted and Γt is the intersection of the line x = t (−a ≤ t ≤ 0)
with the Ḡ = G

∪
∂G.

Many scientists have been investigating nonlocal boundary value problems for ordinary
differential equations and partial differential elliptic equations (see, for example, [1] - [7]
and references therein).

It is known that if f(x, y) ∈ C(Ḡ) then problem (1) has the unique solution u(x, y) ∈
C(2)(G)

∩
C(Ḡ) (classical solution) [1]. The purpose of this work is to generalize the

concept of the classical solution of the problem for the case f(x, y) ∈ L2(G).
Let us recall some notations and facts from [2].
Let us denote byD(Ḡ) the lineal of all the real functions υ(x, y) satisfying the following

conditions:

1. υ(x, y) is defined almost everywhere on Ḡ, and the boundary value υ(0, y) is defined
almost everywhere on Γ0 ;

2. υ(x, y) ∈ L2(G), υ(0, y) ∈ L2(0, b).

On the lineal D(Ḡ) let us define the operator of symmetrical extension as follows

τυ(x, y) =

{
υ(x, y), (x, y) ∈ Ḡ,
−υ(−x, y) + 2υ(0, y), (x, y) ∈ Q̄,
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where Q = {(x, y)|0 < x < ξ, 0 < y < b}. Below we will use the notation τυ(x, y) =
υ̃(x, y).

For two arbitrary functions g(x, y) and h(x, y) from the lineal D(Ḡ), let us define the
following scalar product

[g, h] =

∫ b

0

∫ ξ

−ξ

∫ x

−a

g̃(s, y)h̃(s, y)dsdxdy.

After the introduction of above scalar product the linealD(Ḡ) becomes the pre-Hilbert
space. Let us denote it byH(Ḡ) and the corresponding norm by ∥·∥H , which is determined
from the scalar product

∥υ∥H = [υ, υ]
1
2 . (2)

The norm (2), defined on the lineal H(Ḡ), is equivalent to the norm, defined by the
following formula

∥υ∥2 = ∥υ(x, y)∥2L2(G) + ∥υ(0, y)∥2L2(0,b)
.

So, H(Ḡ), is the Hilbert space.
Assume that the domain of definition of the operator A = −∆+λI is the lineal DA(Ḡ)

of the functions from space H(Ḡ), each υ(x, y) element of which satisfies the following
conditions:

1. υ(x, y) ∈ C(2)(Ḡ), ∂2υ(−ξ,y)
∂x2 = 0, ∂kυ(0,y)

∂xk = 0, ∀y = [0, b], k = 1, 2;

2. υ(x, y)|Γ = 0, υ(x, y)|Γ−ξ = υ(x, y)|Γ0 .

The lineal DA(Ḡ) is dense in the space H(Ḡ) and A = −∆+ λI is positively defined
operator on the lineal DA(Ḡ). One can follow to the standard way of completion of lineal
DA(Ḡ) to the energetic space [8]. Let us introduce the new scalar product on DA(Ḡ):

[g, h]A =

∫ b

0

∫ ξ

−ξ

∫ x

−a

(
∂g̃(s, y)

∂s

∂h̃(s, y)

∂s
+

∂g̃(s, y)

∂y

∂h̃(s, y)

∂y
+ λg̃(s, y)h̃(s, y)

)
dsdxdy.

For the corresponding norm we use the notation ∥ · ∥A. After introducing above scalar
product, the lineal DA(Ḡ) becomes the pre-Hilbert space which we denote by SA(Ḡ). By
HA(Ḡ) we denote the Hilbert space obtained after completion of SA(Ḡ) by the norm ∥·∥A.
The norm ∥| · |∥ in this space defined by the formula

∥|υ|∥2 = ∥υ∥2
W

(1)
2 (G)

+ ∥υ(0, y)∥2
W

(1)
2 (0,b)

and ∥ · ∥A are equivalent norms. Thus, any function υ(x, y) of the space HA(Ḡ) is the

element of the space W
(1)
2 (G) and its υ|Γ−ξ and υ|Γ0 traces are the same element of the

space W
(1)
2 (0, b).

Let f0(y) ∈ L2(0, b) and f(x, y) ∈ L2(G), then for the function f̄(x, y) = (f(x, y), f0(y)) ∈
H(Ḡ) the quadratic functional

Ff0(y)(υ) = [υ, υ]A − 2[f̄ , υ] (3)
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has the unique function uf0(y)(υ) ∈ HA(Ḡ), which minimizes the functional (3) and for
every υ(x, y) ∈ HA(Ḡ) satisfies the identity

[uf0(y), υ]A = [f̄ , υ]. (4)

Note that in minimization of the functional (3) the function f(x, y) is fixed from
problem (1), but the function f0(y) does not participate in the statement of problem
(1). It changes in the space L2(0, b) and to every concrete value f0(y) corresponds only
one minimizing uf0(y)(x, y) ∈ HA(Ḡ) function. If f(x, y) ∈ C(Ḡ) and f0(y) is that the
corresponding minimizing function uf0(y)(x, y) is smooth enough, then from (4) we get

Auf0(y)(x, y) = f(x, y)

and uf0(y)(x, y) is the classical solution of problem (1): uf0(y)(x, y) = u(x, y).
When f(x, y) ∈ C(Ḡ), then for problem (1) the certain variational equivalent is the

following statement.

Theorem 1. The function uf0(y)(x, y) ∈ HA(Ḡ) which minimizes the functional (3), is a
solution of problem (1) if and only if the following condition is fulfilled [3]

−
d2uf0(y)(0, y)

dy2
+ λuf0(y)(0, y) = f0(y), y ∈]0, b[.

Therefore, when f0(y) = −d2u(0,y)
dy2

+λu(0, y), then u(x, y) will be a minimizing function

of the functional (3). The uniqueness of the selected f0(y) function is derived from the
uniqueness of the classical u(x, y) solution.

The main content of the presented work is expressed in the following statement of the
continuous dependence of the solution of problem (1) on the right side.

Theorem 2. For problem (1) there exists a constant C > 0, such that for any f(x, y) ∈
C(Ḡ) function and its corresponding solution u(x, y) satisfies the inequality

∥u(x, y)∥
W

(1)
2 (G)

≤ C∥f(x, y)∥L2(G). (5)

Let now f(x, y) = φ(x, y), φ(x, y) ∈ L2(G) and let {fn(x, y)} be the sequence of
continuous functions on the domain Ḡ converging to the function f(x, y). It is easy to
see that for all of such sequences fn(x, y) the classical solutions converge to the function

ū(x, y) of the space W
(1)
2 (G) and

∥ū(x, y)∥
W

(1)
2 (G)

≤ C∥φ(x, y)∥L2(G). (6)

It is clear that, if φ(x, y) ∈ C(Ḡ), then ū(x, y) represents the classical solution of
problem (1).

It is natural to introduce the following definition.
Definition. The generalized solution of problem (1) for the right side φ(x, y) ∈ L2(G),

(or simply generalized solution) is said to be the function ū(x, y) ∈ W
(1)
2 (G), which is the
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limit in W
(1)
2 (G) of the classical solutions {un(x, y)} of problem (1) with continuous on

Ḡ right side functions {fn(x, y)} converging to the function φ(x, y) ∈ L2(G).
Inequality (6) expresses the continuous dependence of the generalized solution of prob-

lem (1) on the right side φ(x, y) ∈ L2(G).
Notice that if f(x, y) ∈ A(DA(Ḡ)) and f̄(x, y) = (f(x, y), f(0, y)) then minimiz-

ing function of the functional Ff(0,y)(υ) is the solution of the problem (1), in this case
uf(0,y)(x, y) = u(x, y) ∈ DA(Ḡ). Thus, if φ(x, y) ∈ L2(G), ε > 0 and ū(x, y) is the general-
ized solution of problem (1) with the right side φ(x, y) and function f(x, y) ∈ A(DA(Ḡ))
approximates φ(x, y) function with accuracy ε

∥φ(x, y)− f(x, y)∥L2(G) < ε,

then using (6) we have

∥ū(x, y)− u(x, y)∥
W

(1)
2 (G)

< εC.
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