Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 32, 2018

SUMMABILITY OF FOURIER SERIES FOR ALMOST PERIODIC ON LOCALLY COMPACT ABELIAN GROUPS FUNCTIONS WITH VALUES IN BANACH SPACES

Tamaz Chantladze Duglas Ugulava

Abstract. The problem of summability of Fourier series of continuous almost periodic on locally compact Abelian groups functions with values in Banach spaces is considered.

Keywords and phrases: Almost periodic functions, locally compact Abelian groups, Banach spaces, Fourier series, summability.

AMS subject classification (2010): 43A60, 43A55.

Consider a locally compact Abelian group G with a Haar measure μ , assuming that the topology of G is Hausdorff. We denote by \widehat{G} the group dual to G, i.e., the group of all continuous homomorphisms (characters) acting from G to the group which is the unit circle endowed with the topology of uniform convergence on compact subsets of G.

In the well-known paper of S.Bochner and J.von-Neumann [1], the notion of almost periodic functions, defined on arbitrary groups with values in topological spaces X is introduced. In the case of a locally compact Abelian group G and Banach space X, this definition takes the following form

Definition 1. Let f be a continuous function defined on a locally compact Abelian group G and having the values in a Banach space X. The function f is called almost periodic on G, if for a fixed $x \in G$ and arbitrary $g \in G$, from the family $\{f(xg)\}$ one can choose an uniformly convergent with respect to x subsequence in the sense of the norm.

One can verify that if G is the group of real numbers, X is the Banach space of real numbers and f satisfies the condition of Definition 1, then it is H.Bohr's classical almost periodic function [2].

The set of all almost periodic on G functions with values in a Banach space X will be denoted by AP(G, X). In [1] it is proved that AP(G, X) is the linear closed set in X. Moreover, every $f \in AP(G, X)$ is bounded and uniformly continuous on G. If Cis the Abelian group of the complex numbers, $f \in A_P(G, X)$ and $\alpha \in AP(G, C)$, then $\alpha f \in AP(G, X)$.

Important is the proven in [1] following theorem on the mean value of almost periodic functions.

Theorem 1. Let G be a topological group, let X be a Banach space and a function f belongs to the space AP(G, X). Then there exists a sequence of systems $(n = 1, 2, \dots) a_{n,1}, \dots, a_{n,m_n} \in G, \alpha_{n,1}, \dots, \alpha_{n,m_n} \geq 0, \alpha_{n,1} + \dots + \alpha_{n,m_n} = 1$ and an unique element $\psi \in X$ such that the sequence

$$\{\alpha_{n,1}f(a_{n,1}g) + \dots + \alpha_{n,m_n}f(a_{n,m_n}g), g \in G\}$$

converges to a ψ in the sence of the norm of X, when $n \to \infty$, uniformly with respect to g.

For the theory of almost periodic functions it is important that for arbitrary $f \in AP(G, X)$ the mean value $M_g\{f(g)\overline{\chi(g)}\}$ of the function $f(g)\overline{\chi(g)}, \chi \in \widehat{G}$, is nonzero at most on countable sets of characters χ (the subscript g at M means that the mean value is taken relative to g). This circumstance makes it possible that each function $f \in AP(G, X)$ is brought into correspondence with the formal Fourier series

$$f(g) \sim \sum_{n=0}^{\infty} a_n(f)\chi_n(g), \ \chi_n \in \widehat{G}, \ \chi_0 = e,$$
(1)

where e is the unit element of the group \widehat{G} and the coefficients $a_n(f) = M_g\{f(g)\overline{\chi(g)}\}$ are elements of the space X.

We study the problem of summability of series (1) in the case when $\{\chi_n\}$ has unique accumulation point at the infinity of \widehat{G} . In such a case, we denote by $P_K(f, X)$ the set of elements of the form $\sum_{\chi_k \in K} a_k \chi_k(g)$, where K is a compact set of \widehat{G} , a_k are elements of X and $g \in G$. The elements of $P_K(f, X)$ are called trigonometric polynomials of degree K.

Let L(G) be the space of integrable on G by a Haar measure μ functions. For a function $f \in L(G)$ we can define its Fourier transform \widehat{f} on \widehat{G} according to the equality $\widehat{F}(\chi) = \int_G f(g)\overline{\chi(g)}d_{\mu}g, \ \chi \in \widehat{G}$. We denote by $U_{\widehat{G}}$ the collection of all symmetric compact sets from \widehat{G} which are closures of neighborhoods of the unit element of \widehat{G} . For a $T \in U_{\widehat{G}}$ we consider a defined on \widehat{G} real valued continuous function φ_T such that $\operatorname{supp} \varphi_T \subset T$, the Fourier transform $V_T(g) := \widehat{\varphi_T}(g)$ belongs to L(G) and $\int_G V_T(g)dg = 1$. For $f \in A_P(G, X)$ and V_T we define the following function

$$f_T(g) := \int_G f(gs) V_T(s) ds, \ g \in G.$$
(2)

The integral in (2) is understood in the Bochner sense [3].

Proposition 1. Let f be a function from AP(G, X), whose Fourier series has the form (1) and every $T \in U_{\widehat{G}}$ contains only a finite number of the entering in (1) characters χ_n . If the acting from G to X function f_T is defined by (2), in which the numerical function V_T satisfies the above mentioned conditions, then

$$f_T(g) = \sum_{\chi_k \in T} a_k(f) \varphi_T(\chi_k) \chi_k(g).$$
(3)

Proof. We have for a fixed $g \in G$ and arbitrary $h \in G$

$$||f_T(gh)|| = ||\int_G f(sgh)V_T(s)ds|| \le \int_G ||f(sgh)|| \cdot |V_T(s)|ds.$$
(4)

Since f belongs to the space AP(G, X), from the family $\{f(sgh)\}$ one can select a subsequence $\{f(sgh_k)\}, h_k \in G$, which converges in X uniformly with respect to $s^{-1}g$. Therefore, from (4) it follows that the function f_T belongs to AP(G, X). Let us calculate the Fourier coefficient b_k of the function f_T which corresponds to the character χ_k . Namely

$$b_k(f_T) = M_g\{f_T(g)\overline{\chi_k(g)}\} = M_g\{\int_G V_T(s)\chi_k(s)f(sg)\overline{\chi_k(gs)}ds\}.$$

By application of Theorem 1 we see that the coefficient $b_k(f_T)$ can be represented in the following form

$$b_k(f_T) = \lim_{n \to \infty} \sum_{i=1}^{m_n} \int_G \alpha_{n,i} V_T(s) \chi_k(s) \overline{f(a_{n,i}gs)} \chi_k(a_{n,i}gs) ds,$$

where $\sum_{i=1}^{m_n} \alpha_{n,i} = 1$ and $a_{n,i}$ $i = 1, \dots, m_n$ are some elements of the group G. One can pass to the limit inside the integral, because $V_T \in L(G)$ and f is bounded on X. Applying well-known properties of mean values ([1], p. 29), we get

$$b_k(f_T) = \int_G V_T(s)\chi_k(s)M_g\{f(gs)\overline{\chi_k(gs)}\}ds$$
$$= \int_G V_T(s)\chi_k(s)M_g\{f(g)\overline{\chi_k(g)}\}ds = \widehat{V_T}(\chi_k^{-1})M_g\{f(g)\overline{\chi_k(g)}\} = a_n(f)\varphi_T(\chi_k).$$
(5)

If $\chi_k \in T$, we have from (5) that $b_k = 0$. From this and (5) it follows that the right hand of (3) is the Fourier series of the function $f_T(g)$. From the uniqueness theorem of Fourier series for almost periodic functions ([1], p.36) follows equality (3).

For the case when G = R, X = C, Proposition 1 was proved in [4].

Theorem 2. Let G be a locally compact Abelian group, $T \in U_{\widehat{G}}$, $V_T = \widehat{\varphi_T}$, $\varphi(e) = 1$, $\lim_{T \to \widehat{G}} \varphi_T(g) = 1$ for arbitrary fixed $g \in G$ and the integrals $\int_G |V_T(g)| dg$ are uniformly bounded according to T. Let us assume moreover that for $f \in AP(G, X)$ the conditions from Proposition 1 are satisfied. Then uniformly with respect to $g \in G$

$$\lim_{T \to \widehat{G}} f_T(g) = f(g),$$

where $f_T(g)$ is the trigonometric polynomial of the degree T, defined by (3).

Proof. According to the well-known approximate theorem ([1], p.37), for the function $f \in AP(G, X)$ and $\varepsilon > 0$ there exists a trigonometric polynomial $Q_{T_0}(g) = \sum_{\chi_k \in T_0} c_k \chi_k(g)$, $c_k \in X$ such that

$$||f - Q_{T_0}|| < \varepsilon. \tag{6}$$

We can see this also by a simple generalization of the proof, given in [4] or in [5]. It is important to note that the characters appearing in a finite polynomial Q_{T_0} are chosen from the characters encountered in the Fourier series of the function f(g). Based on (6), we have for arbitrary symmetric with respect to the unity e compact set $T \supset T_0$ of \widehat{G} that

$$\left\|\int_{G} Q_{T_0}(gu) V_T(u) du - \int_{G} f(gu) V_T(u) du\right\| < \varepsilon \int_{G} |V_T(u)| du.$$

$$\tag{7}$$

But $\int_G Q_{T_0}(gu)V_T(u)du = \sum_{\chi_k \in T_0} c_k \int_G \chi_k(gu)V_T(u)du = \sum_{\chi_k \in T_0} c_k \varphi_T(\chi_k)\chi_k(g)$ and we have from (7)

$$\left\|\sum_{\chi_k \in T_0} c_k \varphi_T(\chi_k) \chi_k(g) - f_T(g)\right\| < \varepsilon \int_G |V_T(u)| du.$$
(8)

From the conditions imposed on the function φ_T it follows that we can choose such compact $T \subset \widehat{G}$ for which the following holds

$$|1-\varphi_T(\chi_k)| < (\sum_{\chi_k \in T_0} ||c_k||)^{-1} \varepsilon.$$

Then we have

$$||Q_{T_0}(g) - \sum_{\chi_k \in T_0} c_k \varphi_T(\chi_k) \chi_k(g)|| = ||\sum_{\chi_k \in T_0} c_k (1 - \varphi_T(\chi_k) \chi_k(g))|| < \varepsilon.$$
(9)

It follows from (7), (8), (9) that for arbitrary set $T \in U_{\widehat{G}}$ the following is valid

$$||f - f_T|| < \varepsilon (2 + \int_G |V_T(u)| du).$$

If $T \to \widehat{G}$, than we have the validity of Theorem 2.

REFERENCES

- BOCHNER, S., NEUMANN, J.VON. Almost periodic functions in groups, II. Transactions of the American Math. Soc., 37 (1935), 21-50.
- 2. BOHR, H. Zur theorie der fastperiodischen functionen. Acta Math., 45 (1925), 29-127.
- 3. IOSIDA, K. Functional analysis, Springer, 1965.
- UGULAVA D. Summability of Fourier series for almost-periodic functions on locally compact Abelian groups (Russian). Izv. Vuz, Math., 12 (2016), 82-95, English trans. in Russian Math., 60 (2016), 67-78.
- KROTOV M. On the approximation of almost periodic functions with the values in a Banach space. Vestnik Baltiisk. Federal I. Kant University, 4 (2012), 148-150.

Received 14.05.2018; revised 10.09.2018; accepted 16.12.2018.

Author(s) address(es):

Tamaz Chantladze N. Muskhelishvili Institute of Computational Mathematics, Georgian Technical University G. Peradze str. 4, 0159 Tbilisi, Georgia E-mail: tazochan@mail.ru

Duglas Ugulava N. Muskhelishvili Institute of Computational Mathematics, Georgian Technical University G. Peradze str. 4, 0159 Tbilisi, Georgia E-mail: duglasugu@yahoo.com