Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 32, 2018

THE R-COMMUTANT AND ABELIAN VARIETIES OF EXPONENTIAL MR-GROUPS

Mikheil Amaglobeli

Abstract. In the present paper some problems of the theory of the varieties of exponential MR-groups are considered.

Keywords and phrases: Lyndon *R*-group, *MR*-group, varieties *MR*-group, α -commutator, *R*-commutant.

AMS subject classification (2010): 20B07.

The notion of exponential R-group (R is an arbitrary associative ring with identity 1) was introduced by Lyndon in [1]. Myasnikov and Remeslennikov introduced in [2] a new category of exponential R-groups (MR-groups) as a natural generalization of the notion of R-module to a noncommutative case. Recall the basic definitions (see [1, 2]).

Let $L = \langle \cdot, -^1, e \rangle$ be the group language (signature); here, \cdot denotes the binary operation of multiplication, $^{-1}$ denotes the unary operation of inversion, and e is a constant symbol for the identity element of the group.

We enrich the group language to the language $\mathfrak{L}_{gr}^* = \mathfrak{L}_{gr} \cup \{f_\alpha(g) \mid \alpha \in R\}$, where $f_\alpha(g)$ is a unary algebraic operation.

Definition 1 ([1]). A Lyndon *R*-group is a set *G* an which operations, \cdot , $^{-1}$, *e* and $\{f_{\alpha}(g) \mid \alpha \in R\}$ are defined and the following axioms hold:

- (i) the group axioms;
- (ii) for all $g, h \in G$ and all elements $\alpha, \beta \in R$,

$$g^1 = g, \ g^0 = e, \ e^{\alpha} = e;$$
 (1)

$$g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, \ g^{\alpha\beta} = (g^{\alpha})^{\beta};$$
 (2)

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h.$$
 (3)

For brevity, in the formulas expressing the axioms, we write $f_{\alpha}(g)$ instead of g^{α} for $g \in G$ and $\alpha \in R$.

Let \mathfrak{L}_R denote the category of all Lyndon *R*-groups. Since the axioms given above are universal axioms of the language \mathfrak{L}_{gr}^* , it follows that \mathfrak{L}_R is a variety of algebraic systems in the language \mathfrak{L}_{gr}^* ; therefore, general theorems of universal algebra allow us to consider the varieties of *R*-groups, *R*-homomorphisms, *R*-isomorphisms, free *R*-groups, and so on. MR-exponential groups. There exit Abelian Lyndon R-groups which are not R-modules (see [3], where the structure of a free Abelian R-group was studied in detail). The authors of [1] augmented Lyndon's axioms (quasi-identity):

$$(MR) \qquad \forall_{g,h\in G}, \ \alpha \in R \ [g,h] = e \Longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha} \ \left([g,h] = h^{-1}h^{-1}gh \right).$$
(4)

Definition 2 ([2]). An *MR*-group is a group *G* on which the operations g^{α} are defined for all $g \in G$ and $\alpha \in R$ so that axiom (1)–(4) hold.

Let \mathfrak{M}_R denote the class of all *R*-exponential groups with axioms (1)–(4). Clearly, this class is a quasi-variety in the language \mathfrak{L}_{gr}^* , and free *MR*-groups, *MR*-homomorphisms, and so on are defined; moreover, each Abelian *MR*-group is an *R*-module and vice versa.

Most of natural examples exponential groups belong to the class \mathfrak{M}_R . For example, unipotent groups over a field K of zero characteristic are MK-groups, pro-p-groups are exponential groups over the ring of p-adic integers, etc (see [2] for examples).

A systematic study of MR-group was initiated in [4–10]. Results obtained in these papers have turned out to be very useful in solving well-known problems of Tarski.

Below, following [2], we recall some definitions in the category of MR-groups. Let G be an MR-group.

Definition 3 ([2]). A homomorphism of *R*-groups $\varphi : G_1 \to G_2$ is called an *R*-homomorphism if $\varphi(g^{\alpha}) = \varphi(g)^{\alpha}, g \in G, \alpha \in R$.

Definition 4 ([2]). For $g, h \in G$ and $\alpha \in R$, the element

$$(g,h)_{\alpha} = h^{-\alpha}g^{-\alpha}(gh)^{\alpha}$$

is called the α -commutator of the elements g and h.

It is obvious that for $\alpha = -1$ the α -commutator $(g, h)_{\alpha}$ coincides with the usual commutator $[h^{-1}, g^{-1}]$.

Clearly, $(gh)^{\alpha} = g^{\alpha}h^{\alpha}(g,h)_{\alpha}$ and $G \in \mathfrak{M}_R \iff ([g,h] = e \implies (g,h)_{\alpha} = e)$. This equivalence leads to the definition of an \mathfrak{M}_R -ideal.

Definition 5 ([2]). A normal *R*-subgroup $H \leq G$ is called an \mathfrak{M}_R -ideal if, $(g,h)_{\alpha} \in H$ for all $g \in G$, $h \in H$ and $\alpha \in R$.

Proposition 1 ([2]).

- (i) If $\varphi : G_1 \to G_2$ is an *R*-homomorphism in the category \mathfrak{M}_R -groups, then ker φ is an \mathfrak{M}_R -ideal in *G*.
- (ii) If H is an \mathfrak{M}_R -ideal in G, then $G/H \in \mathfrak{M}_R$.

Varieties of exponential MR-group. Varieties are closely related to free groups, since identities are the elements of free groups. Let $X = \{x_i \mid i \in I\}$ be an infinite aphabet and $F_R(X)$ be a free MR-group with free generating set X as an MR-group. Let us call arbitrary element $w(x_1, \ldots, x_n) \in F_R(X)$ R-word in X. Let G be an MRgroup and $g_1, \ldots, g_n \in G$. The map $x_i \mapsto g_i$ can be extended to an R-homomorphism $\varphi : F_R(X) \to G$. The image of the word $w(x_1, \ldots, x_n)^{\varphi} \in G$ under this homomorphism is called value of $w(x_1, \ldots, x_n)$ on the elements g_1, \ldots, g_n . Fix the following notations:

$$w(x_1,\ldots,x_n) = w(\overline{x}), \quad \overline{x} = (x_1,\ldots,x_n), \quad w(g_1,\ldots,g_n) = w(\overline{g}), \quad \overline{g} = (g_1,\ldots,g_n),$$
$$w(G) = \left\{ w(\overline{g}) \mid \overline{g} \in G^n \right\} = \left\{ w(g_1,\ldots,g_n) \mid g_i \in G \right\}.$$

Definition 6. An *R*-word $w(\overline{x})$ is called an **identity on** *MR*-group *G* if w(G) = e.

Definition 7. Let W be a subset of $F_R(X)$. Then W defines the variety of MR-groups

 $\mathfrak{N} = \mathfrak{N}(W) = \{ G \in \mathfrak{M}_R \mid w(G) = e \ \forall w \in W \}.$

Definition 8. An *R*-word $u(\overline{x}) \in F_R(X)$ is called a **corollary** of the set of words *W*, if u(G) = e for any group $G \in \mathfrak{N}$.

Definition 9. The \mathfrak{M}_R -ideal of G generated by all values of all words from W is called W-verbal ideal of G. Let us denote by W(G) the W-verbal ideal of G.

Proposition 2. A verbal ideal in $F_R(X)$ generated by the set of word W consists exactly of all corollaries of the set W in $F_R(X)$.

Definition 10. A group $F_{W,R}(X) \in \mathfrak{N}$ is called a *free group with the base* X *in the varieties* \mathfrak{N} if $F_{W,R}(X)$ R-generated by the set X and for any group $G \in \mathfrak{N}$ arbitrary map $\varphi_0 : X \to G$ can be extended to an R-homomorphism $\varphi : F_{W,R}(X) \to G$.

Theorem 1. The group $F_{W,R}(X)/W(F_{W,R}(X))$ is a free group in the varieties of \mathfrak{N} which is defined by W.

Definition 11. The subgroup $(G, G)_R = \langle (g, h)_\alpha | g, h \in G, \alpha \in R \rangle_R$ of G is called the *R*-commutant of G.

Theorem 2. For any MR-group G the following is true:

- (i) The R-commutant of G is the verbal MR-subgroup defined by the word $[x, y] = x^{-1}y^{-1}xy$.
- (ii) The R-commutant is the smallest \mathfrak{M}_R -ideal whose factor-group is abelian.

Let us describe abelian varieties of exponential MR-groups. To this end, let us firstly determine the structure of a free abelian exponential MR-group.

Theorem 3. Each free abelian MR-group with base X is a free R-module and R-isomorphic to a factor-group of a free MR-group with base X by its R-commutant.

Theorem 4. There is a one-to-one correspondence between the lattice of two-sided ideals of a ring R and the lattice of verbal MR-subgroups of a free R-module.

Corollary. If $R = \mathbb{Z}$ then each proper subvariety of abelian groups of period $n, n \geq 2$.

Remark. When defining the varieties of \mathfrak{M}_R -groups we follow V. A. Gorbunov's monograph [11], which declares how one can understand varieties of groups inside, quasi-varieties of groups. Therein it is shown that for these varieties all the well-known Birkhoff theorems are that for them there exist the notion of a free group and the theory of defining relations.

REFERENCES

- 1. LYNDON, R.C. Groups with parametric exponents. Trans. Amer. Math. Soc., 96 (1960), 518-533.
- MYASNIKOV, A.G., REMESLENNIKOV, V.N. Degree groups. I. Foundations of the theory and tensor completions (Russian). Sibirsk. Mat. Zh., 35, 5 (1994), 1106-1118; translation in Siberian Math. J., 35, 5 (1994), 986-996.
- 3. BAUMSLAG G. Free abelian X-groups. Illinois J. Math., 30, 2 (1986), 235-245.
- 4. AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Free nilpotent *R*-groups of class 2 (Russian). Dokl. Akad. Nauk, 443, 4 (2012), 410-413; translation in Dokl. Math., 85, 2 (2012), 236-239.
- 5. MYASNIKOV, A.G., REMESLENNIKOV, V.N. Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups. *Inter. J. Algebra Comput.*, 6, 6 (1996), 687-711.
- BAUMSLAG, G., MYASNIKOV, A., REMESLENNIKOV, V. Discriminating completions of hyperbolic groups. Dedicated to John Stallings on the occasion of his 65th birthday. *Geom. Dedicata*, 92 (2002), 115-143.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Extension of a centralizer in nilpotent groups (Russian). Sibirsk. Mat. Zh., 54, 1 (2013), 8-19.
- AMAGLOBELI, M., REMESLENNIKOV, V. Algorithmic problems for class-2 nilpotents MR-groups. Georgian Math. J., 22, 4 (2015), 441-449.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Foundations of the theory of varieties of nilpotent MR-groups (Russian). Sib. Mat. Zh., 57, 6 (2016), 1197-1207; translation in Sib. Math. J., 57, 6 (2016), 935-942.
- 10. AMAGLOBELI, M.G. Functor of Tensor Completion in Categories Exponential *MR*-Groups (Russian). Algebra & Logic 57, 2 (2018), 137-149.
- GORBUNOV, V.A. Algebraic theory of quasivarieties. Siberian School of Algebra and Logic. Consultants Bureau, New York, NY, 1998.

Received 27.05.2018; revised 11.09.2018; accepted 26.11.2018.

Author(s) address(es):

Mikheil Amaglobeli I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: mikheil.amaglobeli@tsu.ge