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OF AXISYMMETRIC LOADING OF A LAYERED CYLINDRICAL SHELL BY
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Abstract. Based on one of the variants of the improved theory, in the case of axisymmetric

loading of a layered cylindrical shell by local surface force, for solution of the nonlinear deforma-

tion task the system of decision differential equations is obtained for this class. A particular case

of deformation of cylindrical shell is considered, an appropriate analysis based on the results

obtained from numerical realization of the example is stated.
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The paper deals with the sandwich shells that are consisting from the layers with
different mechanical properties. For the study of the mode of deformation of this class of
shells it is desirable to use the constructed on theory of breaks hypothesis. The essence
of the breaks hypothesis is the following: the arranged on the normal of the coordinate
surface element of the shell after deformation becomes as break that gives the possibility
along the thickness of the sandwich shell to consider the non-uniformity of the shear
deformation.

Let us state the constructed based on the breaks hypothesis the main equations and
ratios of the nonlinear deformation theory of sandwich shells in the curvilinear coordinates
α, β system.

The expressions of tangential displacements will be [4]:
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where u, v are the tangential displacements of the coordinate surface, ψα, ψβ are the full

rotation angles of the normal of coordinate surface, γ
(0)
α , γ

(0)
β are the shear deformation

of layer, through which the coordinate surface passes. The coefficients including the
tangential displacement expressions (1) are given in [3].

In case of presentation of tangential displacements as (1) the deformation components
will be presented as follows:
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The expressions of the values of included in the expressions of the deformation (2),

ε
(i)
αα, ε

(i)
ββ, ... , κ

(i)
αβ are stated in [4-6].

In the theory of shells, the relations between the forces and deformation components
are expressed by the elasticity relations, those expressions are stated in [4-6]. The elasticity
relations in the theory of shells perform the same role as the Hooke’s law in the theory of
elasticity.

Equilibrium equations of elements of layered shells will have the form:
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where
Q∗

α = Qα − (Nα + k1Mα)θα − (Nαβ + k1Mαβ)θβ,

Q∗
β = Qβ − (Nβα + k2Mβα)θα − (Nβ + k2Mβ)θβ.

(4)

Further let’s consider the tasks of axisymmetric nonlinear deformation of the sandwich
shells of rotation. In this case we mean the curvilinear coordinate α = S - that represents
the length of the meridian arc, and β = θ - is the central angle of the parallel circle. The
following system of solving nonlinear differential equations to solve these tasks based on
the basic equations and ratios is stated in our paper
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where
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The coefficients of the equations (5) system and (6) expressions are determined by
geometric and mechanical characteristics of the shell [6].

If we add the boundary conditions to the equations (5) system, we get the nonlinear
boundary task.

In the case of a particular case it is considered the mode of deformation of the sim-
ply supported by edges orthotropic cylindrical shell, in the case of acting on it contour
compression axial NS forces and local normal surface forces.

Let’s designate as h1, h2, h3 the thickness of the outer, middle and inner layers of cylin-
drical shell accordingly; as Ei

1, E
i
2 the modules of elasticity in accordance with coordinate

axe direction; vi12, v
i
21 are the Poison coefficients; Gi

13 is a shear modulus where i = 1, 2, 3
are numbers of layers of shell; R is the radius of coordinate surface of the cylindrical shell
and the l is the length of cylinder. The task has been solved for the following listed values:
R = 50; l = 60; h1 = 0.3; h2 = 2; h3 = 0.3; E1

1 = 1.5 · 106; E1
2 = 3 · 106; E2

1 = 2 · 102;
E2

2 = 3 · 102; E3
1 = 1.2 · 104; E3

2 = 2.5 · 104; v112 = 0.2; v121 = 0.34; v212 = 0.1; v221 = 0.14;
v312 = 0.14; v321 = 0.17; G1

13 = 0.15 · 106; G2
13 = 0.15 · 102; G3

13 = 0.35 · 104.

Table
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The numerical data in the S = l/2 section of the results of calculation of ω function
derived from the solution of the proposed task is given in the table. The numerical
data stated in the table are constructed based on Kirchhoff-Love (1) as well as broken
lines (2) hypotheses, as well as solutions made using linear and non-linear theories. In
particular, the acting on cylindrical body compression contour force NS = −200, and on

the cylindrical surface strip S ∈
(
l
2
− ε, l

2
+ ε

)
acts as q3 = q sin π

S− l
2
+ε

2ε
the normal force.
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