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Abstract. Functional formulation of quantum, classical and stochastic dynamics and super-
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1 Quantum, classical and stochastic dynamics and supersymmetry. Af-
ter formulation of the mathematical framework of quantum mechanics (QM), operatorial
formulation of QM, Koopman and von Neumann gave operatorial approach to classical
Hamiltonian mechanics [5], [11]. After Wiener introduction of the functional integrals,
Dirac and Feynman gave formal functional integral formulation of the quantum theory [2].
Gozzi invented functional integral formulation of the classical theory [4]. All stochastic
and deterministic differential equations, describing all natural and engineered dynamical
systems, possess a topological supersymmetry. Its spontaneous breakdown could be inter-
preted as the stochastic generalization of deterministic chaos. This conclusion stems from
the fact that such phenomenon encompasses features that are traditionally associated
with chaotic dynamics such as non-integrability, positive topological entropy, sensitivity
to initial conditions. Spontaneous topological symmetry breaking can be considered as the
most general definition of continuous-time dynamical chaos. For supersymmetric gauge
theories stochastic quantization appears to have one definite advantage: since a gauge fix-
ing term is unnecessary, supersymmetry will not be broken at any step. This holds both
for the Abelian and non-Abelian case. It appears at the moment as if stochastic regular-
ization is the only viable candidate for a regularization scheme which manifestly conserves
both supersymmetry, chiral symmetry and gauge invariance. However, supersymmetry
is related to stochastic quantization also at a much deeper level. As an example, even
purely scalar field theories will, when quantized stochastically, display a ’hidden’ super-
symmetry. This issue, is intimately connected with the existence of a so-called ’Nicolai
map’ for supersymmetric field theories [8]. Parisi-Sourlas ’dimensional reduction’ of scalar
field theories in external random fields [9], is closely related to both supersymmetry and
stochastic quantization. This becomes apparent when one establishes the connection to
the Nicolai map. The phenomenon of dynamical ’dimensional reduction’ was first noted
within the context of critical phenomena associated with spin systems in random exter-
nal fields. Systems very close to such a situation can in fact be created and studied in
the laboratory. Let us concider the Langevin equation associated with a point particle
being subjected to random background noise. This corresponds to the very real physical
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problem of the Brownian motion of a (classical) particle in a heat bath. The Langevin
equation for the particle reads

dx

dt
≡ ẋ = −δS

δx
+ η(t), (1)

where x represents the space coordinate of the particle. Expectation values are, as usual,
evaluated as the path integral

< x(t1)... x(tn) >=

∫
dη x(t1)... x(tn) exp(−1

4

∫
dtη(t)2) (2)

over a Gaussian noise, i.e.

< η(t1)η(t2) >= 2δ(t1 − t2). (3)

We now attempt to make a change of variables: η → x. This involves the Jacobian

det(δη(t)/δx(t′)) = det((d/dt+ V ′)δ(t− t′)), V = δS/δx. (4)

For partition function Z, we have

Z =

∫
dη exp(−1

4

∫
dtη(t)2)

=

∫
dηdxdet(d/dt+ V ′)δ(ẋ+ V − η(t)) exp(−1

4

∫
dtη(t)2)

=

∫
dxdet(d/dt+ V ′) exp(−1

4

∫
dt(ẋ+ V )2)

=

∫
dxdψdψ̄ exp(−S), S =

∫
dt(

1

4
(ẋ+ V )2 − ψ̄(d/dt+ V ′)ψ). (5)

This system is recognized as Witten’s example of supersymmetric quantum mechanics.
So, purely classical (although stochastic) problem of Brownian motion is completely equiv-
alent to a (supersymmetric) quantum mechanical problem!

2 Generalized or pseudoanalytic functions (GPF). The theory of analytic
functions of a complex variable occupies a central place in analysis. Riemann consid-
ered the unique continuation property to be the most characteristic feature of analytic
functions. GPF do possess the unique continuation property, and each class of GPF has
almost as much structure as the class of analytic functions. In particular, the operations
of complex differentiation and complex integration have meaningful counterparts in the
theory of GPF and this theory generalizes not only the Cauchy-Riemann approach to
function theory but also that of Weierstrass. Such functions were considered by Picard
and by Beltrami, but the first significant result was obtained by Carleman in 1933, and
a systematic theory was formulated by Lipman Bers [1] and Ilia Vekua (1907-1977), [10].
For more resent results see [3].
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3 Formal, long-wave and short-wave solutions of the canonical equations
for GPF. Analytic function f = u+ iv satisfy the partial differential equation ∂zf = 0,
where complex differential operators are defined as

∂z =
∂

∂z
:=

1

2
(∂x + i∂y), ∂z =

∂

∂z
:=

1

2
(∂x − i∂y) (6)

Generalized analytic functions f = u + iv satisfy the following generalized Cauchy-
Riemann equation [10]

∂zf = Af +Bf̄ + J, A = A0 + iA1, B = B0 + iB1, J = j1 + ij2 (7)

or in terms of the real u and imaginary v components canonical form of the elliptic systems
of partial differential equations of the first order

ux − vy = au+ bv + j1, a = A0 +B0, b = −A1 +B1,
uy + vx = cu+ dv + j2, c = A1 +B1, d = A0 −B0, (8)

or in the matrix form

Dψ = Eψ + J, D =

(
∂x −∂y
∂y ∂x

)
= ∂x − iσ2∂y,

E =

(
a b
c d

)
, ψ =

(
u
v

)
, J =

(
j1
j2

)
. (9)

In the classical sense by a solution of the system of equations (9) we understand a pair
of real continuously differentiable functions u(x, y), v(x, y) of the real variables x and y
which satisfy this system everywhere in a domain G. Such solutions, however, exist only
for a comparatively narrow class of equations.

The formal solution of the canonical equation for GPF (9) is

ψ = ψ0 +RJ, R = (D − E)−1, (D − E)ψ0 = 0. (10)

Let us introduce a ’fundamental’ length parameter l = h−1, xn = lxn, n = 1, 2, x1 =
x, x2 = y, xn is dimensionless. Then, for the resolvent R, we will have the long-wave and
short-wave expansions,

RLW := (lD − E)−1 = −E−1
∑
n≥0

ln(DE−1)n,

RShW := (lD − E)−1 = hD−1
∑
n≥0

hn(ED−1)n,

E−1 =

(
d −b
−c a

)
/∆E, ∆E = ad− bc,

D−1 = ∆−1D

(
∂x ∂y
−∂y ∂x

)
, ∆D = ∂2x + ∂2y (11)

There is a fairly complete theory of generalized analytic functions; it represents an es-
sential extension of the classical theory preserving at the same time its principal features
[10].
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4 Hamiltonization of dynamical systems and quanputers. The following
system of the ordinary differential equations

ẋn = vn(x) + jn(t), 1 ≤ n ≤ N, (12)

Using the following Lagrangian,

L = (ẋn − vn(x)− jn(t))ψn (13)

and the corresponding motion equations

ẋn = vn(x) + jn(t), ψ̇n = −∂vm
∂xn

ψm, (14)

we extended by linear equation for the variables ψ, which maybe complex as well as
grassmann valued, with corresponding supersymmetry. The extended system can be put
in the Hamiltonian form [6]. Infinite dimensional as well as discrete analogues of this
system are basis of the quanputers [7].
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