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ON ONE REDUNDANT SYSTEM AND ITS NUMERICAL SOLUTION

Solomon Kurtanidze

Abstract. A system with m main and n stand-by units is considered, where repair and replace-
ment operations are performed. The boundary value problem that contains integral boundary
conditions is stated for the system of the first order partial differential equations which is under
study. Results and analysis of the numerical experiments for the case m = 3 and n = 2 are
given.
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Reliability and Performability analysis for redundant systems is an important problem
(see, for example, [8] —[13]). This problem is studied within frameworks of the mathematic
theory of reliability and queuing theory.

Several new methods have been developed for the last years, which are the interest for
analysis of modern technical systems (see, for example, [3] — [7]). One of such systems is
described below.

The redundant system contains m main and n redundant identical units. Failure rate
of main units are @ > 0. Redundant units do not fail. Failed main unit is replaced by
operative unit by a replaceman. If there is not operative unit in reserve, replacement pro-
cess starts by the time of end of the repair process. There is one replaceman. Distribution
function for replacement time is arbitrary - F'. If the replaceman is busy, units that must
be replaced join a waiting line. Units do not fail in the waiting line. Failed unit moves
to repairman. There is one repairman. Unit that came first will be repaired first. If
repairman is busy, failed units join a waiting line. Repair time distribution is exponential
with parameter p. Repaired unit becomes identical to new one and joins redundant units
or replacement waiting line, if replacement of this unit is necessary. Thus, we have a
closed type queuing system with two types of services — replacement and repair.

Consider random processes.

e k(t) — number of missed units from main units group at the moment ¢.
e [(t) — number of failed units at the moment t.

e (1) — elapsed time from the start of last replacement operation at the moment ¢.

Below A(u) means intensity of replacement rate.

f(u)

M) = T
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where f(u) = F'(u).
Denote:

o P(t) = P{k(t)=0,i(t) =1}, [=0.n

o Ri(t)=P{k(t) =k,I(t)=n+k}, k=0,m

o ¢t u)_hm( P{k(t) =k 1(t)=1—1Lu<0(t) <u-+h}) k=T, ml=1n+k.

There are 3 systems for Fj(t), Ry(t) and gx;(t, v) functions. We consider the System
(1) of the following partial differential equations, that are satisfied by gy (¢,u) functions.

0q1(t,uw)  Oquu(t,u)

L. ’825 + 8u =—((m—=1a+p+Aw)qi(t,u)+pga(tu),l <l<n
Oqips1(t,u) | Oqinni(tu) _ :

2' at au - ((m 1)0[ + 1% + /\<U’)) q1,n+1 (ta U’)u
Oqr1(t Oqp1(t

3. %M’m+ %“”Oz—«m—wa+Mmmmww+w%xmm 1<k<

ot ou

Oqra(t,u)  Ogra(t,u) .

4. 5t + 50 =—((m—d)a+p+ ANu))qr(t,u)

+(m—(i—1) age_11-1(t,0) + pgri+1(t,u), 1<k<m; 1<l<n+k;

Ok l, g, 2 ]
k., Jgj w) 4 dk, 52( u) =—((m—i)a+pu+ ANu)) @rarr(t,u)

+(m—(—1)agg-1nx—1(t,u), 1<k<m

Boundary conditions of g ;(¢,u) functions are written:
¢
1. q1.1(t,0) = / ¢2.1(t, w)A(u)du;

2. q1(t,0) = /q2ltu w)du + paPo(t), 1<l<n+k;

3. gui(t,0) = /qﬂ wdu + paP(t) + pRi(t), | =n+1;
0

4.qklt0 qk+1ltu )du, l<k<m; 1<l<n+k;
0

5. qkltO /qkﬂltu )du—i—uRk() 1<k<1; l:n+k,

[e=]

6. gm.(t,0) =0, 1<l<n+m;

7. Qm,n+m(t7 O) = :U’Rm(t);
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Algorithm. Using methods of constructing of discrete analogs for differential and
integro-differential models (see, for example, [1] and [2]) following difference scheme is
built for system (1).

~ h ~ h ) ) ,
Loqlt = (; - hr) qi + (1 - ;) G+ gy + b,
1<i< r=(m-1a+p+ Au));

Jj+1
2. Nl =

/‘\

- h
- —hr) qur] + <1 — —> ChlhL +hf11

l=n+1, r=((m-1Da+u+ A(u));

. h h
3. qralt) = (; — hr) i1’ (1 - —) Qe+ hpges? + hfeal,

T

= ((m = ko + Au));

m

J+1 h J h Jj+1 J J

4. qryll = - hr ) gl + (1 — ) LY +h(m—(k—1)) agr_1,-1] + hitqr 1
+hfkﬁlg, l<k<m, 1<li<n+4+k r=((m—-ka+p+u);

, h - h . A
B. qrill) = (; - hT) Qrgl + (1 - ;) Gl b (m— (k= 1)) ageo1-1) + hfril,

l<k<m, l=n+k r=((m—-ka+p+u)).

Boundary Conditions of g (¢, ) are rewritten as follows:

i—1

L. qx(4,0) = Z Qit1,(%, ¢) + bgy(7,0), when k < m.

c=0
2. qk,l(i, 0) = bk,l(i, 0), when k = m.

We have got a large system of equations. The boundary conditions allow to find values
of functions gy, [ at points (7;0) and the other equations allow to find values of the same
functions at the remaining points.

Numerical Solution. At first, we do k = m,l =n + k, when ¢ = 0,5 = 0. After that [
varies from n + k to 1, for each k, when k varies from m to 1, for each j, when j varies
from 0 to d, for each 7, when 7 varies from 0 to d.

Thus, we get four independent nested loops.

Experiment.
sin(35¢ + 22u)

k41
Parameters: m =3;n=2;a=1;p =1 A= 1;t = 1;u = 1;d = 3000.
Result: Maximum difference between real and algorithm result numbers is 0.003320141.

k1 =
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450057 (1,5) (2,5) (3,5) (4,5) (5,5) (3,12)
Real 0.034962 | 0.106305 | 0.122995 | 0.076453 | -0.009394 | -0.059053
Algorithm || 0.033842 | 0.105334 | 0.122387 | 0.0773 | -0.007145 | -0.058366
(8,12) (9.12) | (10,12) | (11,12) | (10,20) | (11,20) | (12,20)
0.106324 | 0.122988 | 0.076424 | -0.009431 | -0.085137 | -0.001991 | 0.082179
0.106016 | 0.124538 | 0.076588 | -0.008872 | -0.084944 | -0.003203 | 0.080582
(20,24) | (21,24) | (2,28) (3,28) (4,28) (5.28) | (22,30)
-0.120953 | -0.068743 | 0.051447 | -0.038031 | -0.107957 | -0.122382 | 0.095368
-0.120875 | -0.067902 | 0.053144 | -0.037771 | -0.107749 | -0.121828 | 0.094163

i =1/100, j' = j/100.

We have done many other experiments. Results say that when d — oo, maximum

difference value goes to 0.
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