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ON THE NUMERICAL SOLUTION OF ONE-DIMENSIONAL ANALOG OF
MITCHISON NONLINEAR PARTIAL DIFFERENTIAL SYSTEM
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Abstract. Finite-difference scheme for the numerical solution of one-dimensional analog of

Mitchison nonlinear partial differential system is considered. Many numerical experiments are

conducted and on the basis of that graphical illustrations are constructed.
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Two-dimensional model describing the vein formation of young leaves is given and some
qualitative and structural properties of solutions of this model are established in [1]. In
[2] investigations for one-dimensional analog are carried out. In biological modeling there
are many works where this and many models of similar processes are also presented and
discussed (see, for example, [3]-[6] and references therein). Many scientific works are de-
voted to investigation and numerical resolution of different kinds of initial-boundary value
problems for the model described in [1] and its one-dimensional and multi-dimensional
analogs (see, for example, [7]-[17] and references therein). Let us consider the following
initial-boundary value problem for one-dimensional analog of the vein formation model
[1]. One-dimensional analog of the Mitchison model was investigated in [2] by J.Bell,
C.Cosner and W.Bertiger. They considered the following problem:
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where 0 < g0 ≤ g(ξ) ≤ G0, g0, G0, T, ψ are positive constants, g, S0, d0 are given suffi-
ciently smooth functions and d, S are unknown functions.

Let us consider the system which is analogical to system (1), where ϕ(x, t) and f(x, t)
are given functions:
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After some transformations (3) gets the following form:
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where i = 0, 1, ...,M, j = 0, 1, ...N,Mh = 1, Nτ = T, Sj
i = S(hi, τj), dji = d(hi, τj), gji =

g(hi, τj), ϕj
i = ϕ(hi, τj), f j

i = f(hi, τj).
For the test experiment, we take the right-hand sides such that the exact solution is

given by

S(x, t) = 10(x− x2)(1 + t), d(x, t) = 10(x− x2)(1 + t+ t2),

g(ξ) =
1

1 + ξ2
+ 1, 0 < g0 = 1 ≤ g(ξ) ≤ 2 = G0,

(5)
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Some graphical illustrations of those numerical results for experiment (5) are given in
Fig.1. and Fig.2. The intermediates of absolute error are indicated below the graphs.

The graphs in Fig.1. illustrate numerical results for the case t = 0.5 end ψ = 0.9
The graphs in Fig.2. illustrate numerical results for the case t = 0.5 end ψ ≈

d0M
S0
M−S0

M−1

h
≈ 0.891804977

Figure 1: ψ = 0.9 Absolute error ∈ [0.005373114; 0.019314282].

Figure 2: ψ ≈ 0.891804977 Absolute error ∈ [0.004595881; 0.011474271].
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