Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 31, 2017

THE LEGENDRE FUNCTIONS OF THE SECOND KIND. NEW RELATIONS *

Vagner Jikia Illia Lomidze

Abstract. We propose the new connection between the Legendre functions of the second kind. It is shown that the Legendre associated function of the second kind is analytic when $\text{Re}\mu = \text{Im}\nu = 0$, where μ is the superscript and ν is the lower index of the function, respectively. Besides, we have gotten new asymptotic relations.

Keywords and phrases: Special functions, associated Legendre functions

AMS subject classification (2010): 33C45, 33C47.

1 Introduction. We have obtained the connection between the Legendre functions of the second kind $Q^{\mu}_{\nu}(z)$ and $Q_{\nu}(z)$ when $\operatorname{Re}\mu = \operatorname{Im}\nu = 0$. Also, we have derived asymptotic expressions of the function $Q^{i\tau}_{\nu}(z)$ for the case $|\nu| \to \infty$ and have found its behavior in the neighborhood of the point z = 1, when $\operatorname{Re}\mu = \operatorname{Im}\nu = 0$.

2 Content. To investigate the functions mentioned above, the next integral formula (see, e. g. [1], p. 960) is used:

$$Q_{\nu}^{\mu}(z) = \exp(i\pi\mu) \frac{\Gamma(\nu+1)}{\Gamma(\nu-\mu+1)} \int_{0}^{\infty} dt \cosh(\mu t) \left(z + \sqrt{z^{2}-1}\cosh(t)\right)^{-\nu-1}, \quad (1)$$

Re $(\nu+\mu) > -1, \ \nu \neq -1, \ -2, \ -3, \ \dots, \ |\arg(z\pm 1)| < \pi.$

When $\mu = i\tau$, one gets:

$$Q_{\nu}^{i\tau}(z) = \exp(-\pi\tau) \frac{\Gamma(\nu+1)}{\Gamma(\nu-i\tau+1)} \int_{0}^{\infty} dt \cos(\tau t) \left(z + \sqrt{z^{2}-1}\cosh(t)\right)^{-\nu-1}, \quad (2)$$

Re(\nu) > -1, |arg(z \pm 1)| < \pi,

and for $\mu = 0$ one obtains the Legendre function of the second kind:

$$Q_{\nu}(z) = \int_{0}^{\infty} dt \left(z + \sqrt{z^{2} - 1} \cos h(t) \right)^{-\nu - 1}.$$
 (3)

Let us consider the case z = a, where a is real and a > 1. Then the relation holds:

$$\left(a + \sqrt{a^2 - 1}\cosh(t)\right)^{-\nu - 1} = 0, \quad t \to \infty, \quad \operatorname{Re}(\nu) > -1.$$
 (4)

^{*}This work was supported in part by Georgian Shota Rustaveli National Science Foundation (grant FR/417/6-100/14).

Therefore, from (2) one gets:

$$Q_{\nu}^{i\tau}(a) = \exp(-\pi\tau) \frac{\Gamma(\nu+1)}{\Gamma(\nu-i\tau+1)} \int_{0}^{A} dt \cos(\tau t) \left(a + \sqrt{a^{2} - 1} \cosh(t)\right)^{-\nu-1} + O(A), \quad (5)$$

where $A < \infty$. Similarly, for representation (3) we have:

$$Q_{\nu}(a) = \int_{0}^{A} dt \left(a + \sqrt{a^{2} - 1} \cos h(t) \right)^{-\nu - 1} + O(A) .$$
(6)

Note also, that function (4) is the impulse function and

$$\left(a + \sqrt{a^2 - 1}\cosh(t)\right)^{-\nu - 1} \ge 0, \quad a > 1.$$

Hence, in the integral formula (5) one can use the first theorem of the mean:

$$Q_{\nu}^{i\tau}(a) = \exp(-\pi\tau)\frac{\Gamma\left(\nu+1\right)}{\Gamma\left(\nu-i\tau+1\right)}\cos\left(\tau\eta\right)\int_{0}^{A}dt\left(a+\sqrt{a^{2}-1}\cosh\left(t\right)\right)^{-\nu-1}+O\left(A\right), \quad (7)$$
$$0 \le \eta \le A, \quad \operatorname{Re}\nu > -1.$$

Inserting (6) into formula (7) one gets the next connection:

$$Q_{\nu}^{i\tau}(a) = \exp(-\pi\tau) \frac{\Gamma(\nu+1)}{\Gamma(\nu-i\tau+1)} \cos(\tau\eta) Q_{\nu}(a), \quad a > 1, \qquad (8)$$
$$0 \le \eta \le A, \quad \operatorname{Re}\nu > -1.$$

Since both functions $Q^{\mu}_{\nu}(z)$ and $Q_{\nu}(z)$ in the formula (8) are analytic in a finite region of the complex plane with a cut along the real axis $(-\infty, 1]$ ([1], p. 959, [2], p. 169), one can use the analytic continuation:

$$Q_{\nu}^{i\tau}(z) = \exp(-\pi\tau) \frac{\Gamma(\nu+1)}{\Gamma(\nu-i\tau+1)} \cos(\tau\eta) Q_{\nu}(z), \qquad (9)$$

$$0 \le \eta \le A, \quad \operatorname{Re}\nu > -1, \quad |\operatorname{arg}(z-1)| < \pi.$$

In order to find the real parameter η one has to rewrite (9) in the area $|z| \to \infty$. Inserting the asymptotic relation (see, e. g. [3], p. 165)

$$Q^{\mu}_{\nu}(z) = \sqrt{\pi} \exp(i\pi\mu) \frac{\Gamma(\nu+\mu+1)}{\Gamma(\nu+3/2)} (2z)^{-\nu-1}, \quad z \to \infty$$
(10)

in both sides of the formula (9), after simplifications we get a specification of the parameter η as

$$\cos\left(\tau\eta\right) = \frac{\Gamma\left(\nu - i\tau + 1\right)\Gamma\left(\nu + i\tau + 1\right)}{\Gamma^2\left(\nu + 1\right)}.$$
(11)

The equation (11) has real solutions for the parameter η if Im (ν) = 0. In this case according to the known relation (see, e. g. [4], p. 82)

$$\left|\Gamma\left(\nu - i\tau + 1\right)\right| \le \left|\Gamma\left(\nu + 1\right)\right|,$$

one obtains from (11) $|\cos(\tau \eta)| \leq 1$. Inserting (11) into formula (9) one can write:

$$Q_{\nu}^{i\tau}(z) = \exp(-\pi\tau) \frac{\Gamma(\nu + i\tau + 1)}{\Gamma(\nu + 1)} Q_{\nu}(z), \qquad (12)$$

Im $(\nu) = 0, \quad \text{Re}(\nu) > -1, \quad |\arg(z - 1)| < \pi.$

So, we have shown, that for $\operatorname{Re}(\mu) = 0$, $\operatorname{Im}(\nu) = 0$ and $\operatorname{Re}(\nu) > -1$ the behavior of $Q^{\mu}_{\nu}(z)$ in the area $|\operatorname{arg}(z-1)| < \pi$ is determined by the function $Q_{\nu}(z)$.

Due to the mentioned above and according to the formula (12), the principal value of $Q^{\mu}_{\nu}(z)$ is analytic if z does not lie on the cut: $(-\infty, 1]$. The function $Q_{\nu}(z)$ is also analytic with respect to ν (see, e. g. [5], p. 157). Obviously, the same property has $Q^{i\tau}_{\nu}(z)$.

When $|\nu| \to \infty$, due to the asymptotic behavior (see, e. g. [3], p. 62)

$$\frac{\Gamma(z+\alpha)}{\Gamma(z+\beta)} = z^{\alpha-\beta}, \quad |z| \to \infty,$$
(13)

one gets from (11)

$$\cos(\tau \eta) = 1, \ \eta = 2\pi k/\tau, \ k = 0, \pm 1, ..., \ \tau \neq 0$$

In this case, inserting (11) in the formula (9) and using formula (13), after simplifications an asymptotic expression one obtains:

$$Q_{\nu}^{i\tau}(z) = \exp(-\pi\tau)\nu^{i\tau}Q_{\nu}(z), \quad \operatorname{Re}\nu > -1, \quad |\nu| \to \infty.$$
(14)

Besides, inserting into (12) the asymptotic relation (see, e. g. [6], p. 220):

ν

$$Q_{\nu}(z) = -\frac{\ln(z-1)}{2\Gamma(\nu+1)}, \quad z \to 1,$$

$$\neq -1, \quad -2, \quad -3, \quad \dots, \quad |\arg(z-1)| < \pi,$$
(15)

one can find the behavior of the function $Q^{\mu}_{\nu}(z)$ in the neighborhood of the point z = 1:

$$Q_{\nu}^{i\tau}(z) = -\frac{1}{2} \exp(-\pi\tau) \frac{\Gamma(\nu + i\tau + 1)}{\Gamma^2(\nu + 1)} \ln(z - 1), \quad z \to 1,$$
(16)
$$\operatorname{Im}\nu = 0, \quad \operatorname{Re}\nu > -1, \quad |\operatorname{arg}(z - 1)| < \pi.$$

3 Conclusions. We have gotten the connection between the Legendre functions of the second kind (see the formula (12)).

We have derived an asymptotic relation (14) between the functions $Q_{\nu}^{i\tau}(z)$ and $Q_{\nu}(z)$ for $\operatorname{Re}\nu > -1$, $|\nu| \to \infty$. We have shown the behavior (16) of the function $Q_{\nu}^{i\tau}(z)$ in the neighborhood of the point z = 1.

The results obtained are useful in avoiding some quantum mechanical problems, for instance, in calculations of a non-relativistic transition amplitude of two charged particles of continuous spectra in massive photon approximation.

REFERENCES

- 1. GRADSHTEYN, I.S., RIZHIK, I.M. Tables of Integrals, Series, and Products. Seventh Edition, by Elsevier Inc., 2007.
- LEBEDEV, N.N. Special Functions and their Applications. Editor Richard A. Silverman, by Prentice-Hall, Inc, 1965.
- 3. BATEMAN, H., ERDEYI, A. Higher Transcendental Functions (Russian). Moscow, Nauka, 1, 1965.
- 4. EDITORS: ABRAMOWITS, M., STEGUN, I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Russian). *Moscow, Nauka*, 1979.
- 5. JANCE, E., EMDE, F., LOSH, F. Tables of Higher Functions (Russian). Moscow, Nauka, 1977.
- OLVER, F.W.J. Asymptotics and Special Functions. New-York, San Francisco, London, Academic Press, 1974.

Received 19.05.2017; revised 15.09.2017; accepted 21.10.2017.

Author(s) address(es):

Vagner Jikia I. Javakhishvili Tbilisi State University Chavchavadze Ave. 1, 0179 Tbilisi, Georgia E-mail: v_jikia@yahoo.com

Ilia Lomidze Georgian Technical University Kostava str. 77, 0179 Tbilisi, Georgia E-mail: Lomiltsu@gmail.com