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BASIC BOUNDARY VALUE PROBLEMS FOR CIRCLE WITH DOUBLE
POROSITY ?

Bakur Gulua

Abstract. In this paper plane problems of elasticity for a circle with double porosity is consid-

ered. The solutions are represented by means of three analytic functions of a complex variable

and one solution of the Helmholtz equation. The problems are solved when the components of

the displacement vector is known on the boundary.
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1 Introduction. A theory of consolidation for elastic materials with double poros-
ity was presented in [1-3]. Various issues related to the elastic equilibrium of bodies with
double porosities are treated in [4-6].

In this paper we consider the case of a plane deformed state and write the correspond-
ing two-dimensional system of equilibrium equations in the complex form. We construct
the general solution of the above-mentioned system of equations by means of three ana-
lytic functions of a complex variable and solutions of Helmholtz equations. The obtained
analogues of the Kolosov-Muskhelishvili formulas make it possible to solve analytically
plane boundary value problems of the elastic equilibrium with double porosity. We solve
a boundary value problem for a circle.

2 The plane deformation. Basic equations. Let V be a bounded domain
in the Euclidean two-dimensional space E2 bounded by the contour S. Suppose that
S ∈ C1,β, 0 < β ≤ 1. Let x = (x1, x2) be the points of space E2, ∂i = ∂

∂xi
. Let us assume

that the domain V is filled with an isotropic double porosity material.
The system of homogeneous equations in the full coupled linear equilibrium theory of

elasticity for materials with double porosity can be written as follows

∂ασαβ = 0, (α, β = 1, 2) (1)

σ11 = λθ + 2µ∂1u1 − β1p1 − β2p2, σ22 = λθ + 2µ∂2u2 − β1p1 − β2p2,

σ12 = σ12 = µ(∂1u2 + ∂2u1), θ := ∂1u1 + ∂2u2,
(2)

where σαβ are stress tensor components, pα (α = 1, 2) are the pressures in the fluid phase,
λ and µ are the Lamé parameters, βα (α = 1, 2) are the effective stress parameters.
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In the stationary case, the values p1 and p2 satisfy the following equation{
(k1∆− γ)p1 + (k12∆ + γ)p2 = 0,
(k21∆− γ)p1 + (k2∆ + γ)p2 = 0,

in V, (3)

where γ is the internal transport coefficient and corresponds to fluid transfer rate with

respect to the intensity of flow between the pore and fissures, kα =
κα
µ′

, k12 =
κ12

µ′
,

k21 =
κ21

µ′
. µ′ is the fluid viscosity, κ1 and κ2 are the macroscopic intrinsic permeabilities

associated with matrix and fissure porosity, respectively, κ12 and κ21 are the cross-coupling
permeabilities for fluid flow at the interface between the matrix and fissure phases, ∆ is
the 2D Laplace operator.

On the plane x1x2, we introduce the complex variable z = x1 + ix2 = reiϑ, (i2 = −1)
and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

If relations (2) are substituted into system (1), then system (1) is written in the
complex form

2µ∂z̄∂zu+ + (λ+ µ)∂z̄θ − ∂z̄(β1p1 + β2p2) = 0, in V, (u+ = u1 + iu2). (4)

3 The general solution of system (3)-(4). In this section, we construct the
analogues of the Kolosov-Muskhelishvili formulas [7] for system (4).

From system (3) we easily obtain the expressions for the pressures p1 and p2

p1 = f ′(z) + f ′(z) + (k2 + k12)η(z, z̄), p2 = f ′(z) + f ′(z)− (k1 + k21)η(z, z̄),

where f(z) is an arbitrary analytic functions of a complex variable z in the domain V
and η(z, z̄) is an arbitrary solution of the Helmholtz equation

4∂z∂z̄η − ζ2η = 0, ζ2 =
γ(k1 + k2 + k12 + k21)

k1k2 − k12k21

.

Theorem 1. The general solution of the system of equations (4) is represented as follows:

2µu+ = κϕ(z)− zϕ′(z)− ψ(z) +
µ(β1 + β2)

λ+ 2µ
(f ′(z) + f ′(z)) + δ∂z̄η(z, z̄),

where

κ =
λ+ 3µ

λ+ µ
δ =

4µ((k2 + k12)β1 − (k1 + k21)β2)

(λ+ 2µ)ζ2
,

ϕ(z) and ψ(z) are arbitrary analytic functions of a complex variable z in the domain V .

4 A problem for a circle. In this section, we solve a concrete boundary value
problem for a circle of radius R (Figure 1). On the boundary of the considered domain
the values of pressures p1 and p2 and the displacement vector are given.



Basic Boundary Value Problems for Circle with Double Porosity 53

Figure 1: The circle

We consider the following problem

p1 =
+∞∑
−∞

Ane
inϑ, |z| = R,

p2 =
+∞∑
−∞

Bne
inϑ, |z| = R,

(5)

u+ =
+∞∑
−∞

Cne
inϑ, |z| = R. (6)

The analytic function f(z) and the metaharmonic function η(z, z̄) is represented as a
series

f(z) =
+∞∑
n=1

ane
inϑ, η(z, z̄) =

+∞∑
−∞

αnIn(rζ)einϑ, (7)

where In(rζ) is a modified Bessel function of n-th order, and are substituted in the
boundary conditions (5) we have

+∞∑
n=1

nRn−1
(
ane

i(n−1)ϑ + āne
−i(n−1)ϑ

)
+ (k2 + k12)

+∞∑
−∞

αnIn(Rζ)einϑ =
+∞∑
−∞

Ane
inϑ,

+∞∑
n=1

nRn−1
(
ane

i(n−1)ϑ + āne
−i(n−1)ϑ

)
− (k1 + k21)

+∞∑
−∞

αnIn(Rζ)einϑ =
+∞∑
−∞

Bne
inϑ.

(8)

Compare the coefficients at identical degrees. We obtain the following system of equations{
a1 + ā1 + (k2 + k12)I0α0 = A0,
a1 + ā1 − (k1 + k21)I0α0 = B0,

{
nRn−1an + (k2 + k12)In−1αn−1 = An−1,
nRn−1an − (k1 + k21)In−1αn−1 = Bn−1.

(9)

The solutions of the system (9) have the following forms:

an =
(k1 + k21)An−1 + (k2 + k12)Bn−1

nRn−1(k1 + k2 + k12 + k21)
, αn =

An −Bn

(k1 + k2 + k12 + k21)In−1

.

The analytic functions ϕ(z) and ψ(z) are represented as the series

ϕ(z) =
∞∑
n=1

bnz
n, ψ(z) =

∞∑
n=0

cnz
n,

and are substituted in the boundary conditions (6) we have

κ
∞∑
n=1

Rnbne
inϑ − b̄1Re

iϑ −
∞∑
n=0

(n+ 2)Rn+2b̄n+2e
−inϑ −

∞∑
n=0

Rnc̄ne
−inϑ

+
µ(β1 + β2)Rn

λ+ 2µ

[
∞∑
n=1

ane
inϑ +

∞∑
n=1

āne
−i(n−2)ϑ

]
− δζ

2

+∞∑
−∞

αnIn+1e
i(n+1)ϑ =

+∞∑
−∞

Cne
inϑ.
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Compare the coefficients at identical degrees. We obtain

bn =
1

κ

(
Cn
Rn
− µ(β1 + β2)

λ+ 2µ
an +− δζ

2Rn
αn−1In

)
, n > 1,

cn =
µ(β1 + β2)

λ+ 2µ
(n+ 2)R2an+2 −

δζ

2Rn
αn+1In − (n+ 2)R2bn+2 −

C−n
Rn

, n ≥ 0,

b1 =
κC1 + C1

(κ2 − 1)R
− µ(β1 + β2)

(λ+ 2µ)(κ− 1)
+

δζ

2R(κ− 1)
α0I1.

It is easy to prove the absolute and uniform convergence of the series obtained in the
circle (including the contours) when the functions set on the boundaries have sufficient
smoothness.

Similarly the problem can be solved when on the boundary of the considered domain
the values of stresses are given.
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