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REARRANGEMENT THEOREM FOR THE WEAK TOPOLOGY ?
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Abstract. We prove a refined version of a rearrangement theorem contained in B. K. Lahiri

and S. K. Bhattacharya, A note on rearrangements of series, Math. Student 64, 1-4 (1995),

141-145 (1996).
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1 Introduction. The finite-dimensional version of the rearrangement theorem looks
as follows:

Theorem 1. ([11], [5, Lemma I], [10]) Let X be a finite-dimensional real normed space

and let (xk) be a sequence of elements of X, Sn =
n∑
k=1

xk, n = 1, 2, . . . , and S ∈ X.

If some subsequence (Skn) of (Sn) converges in X to S and (xk) tends to 0 in X, then

there exists a permutation π of the set of natural numbers N such that the series
∞∑
k=1

xπ(k)

converges in X to S.

The following statement represents a first extension of Theorem 1 to an infinite-
dimensional case.

Theorem 2. [6, Lemma I] Let 1 ≤ p <∞, X = Lp, r = min(p, 2) and (xk) be a sequence

of elements of X, Sn =
n∑
k=1

xk, n = 1, 2, . . . , and S ∈ X. If some subsequence (Skn) of

(Sn) converges in X to S and
∞∑
k=1

‖xk‖r <∞, then there exists a permutation π : N→ N

such that the series
∞∑
k=1

xπ(k) converges in X to S.

Later on Theorem 2 for X = L2 was rediscovered in [2], where for the proof the
following lemma is used:

Lemma 1. [2, Lemma] Let H be a real Hilbert space, let n > 1 be a natural number,
xk ∈ H, k = 1, . . . , n and a :=

∑n
k=1 xk. Then it is possible to find a permutation

π : {1, . . . , n} → {1, . . . , n} such that
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‖
k∑
j=1

xπ(j)‖ ≤ ‖a‖+

(
k∑
j=1

‖xπ(j)‖2 + ‖a‖(‖a‖+ 2M)

) 1
2

, k = 1, . . . , n ,

where M = max1≤k≤n ‖xk‖.

In [8] the following ’weak topology’ version of [2, Theorem] is contained:

Theorem 3. [8, Theorem 1] Let H be a real Hilbert space, and let (xk) be a sequence of

elements of H, Sn =
n∑
k=1

xk, n ∈ N, and S ∈ X. If some subsequence (Skn) of (Sn) con-

verges in the weak topology of H to S and
∞∑
k=1

‖xk‖2 <∞, then there exists a permutation

π : N→ N such that the series
∞∑
k=1

xπ(k) converges in the weak topology of H to S.

The proof of Theorem 3 in [8] is based on the following version of Lemma 1:

Lemma 2. [8, Lemma] Let H be a real Hilbert space with the inner product (·|·), let n > 1
be a natural number, xk ∈ H, k = 1, . . . , n and a :=

∑n
k=1 xk. Then it is possible to find

a permutation π : {1, . . . , n} → {1, . . . , n} such that∣∣∣∣∣
k∑
j=1

(xπ(j)|y)

∣∣∣∣∣ ≤ |(a|y)|+

(
‖y‖2

k∑
j=1

‖xπ(j)‖2 + |(a|y)|(|(a|y)|+ 2My)

) 1
2

, k = 1, . . . , n ∀y ∈ H ,

where My = max1≤k≤n |(xk|y)|.

In its turn in [8] Lemma 2 is derived from the following statement:

Lemma 3. [8, p.142] Let H be a real Hilbert space with the inner product let (·|·), n > 1
be a natural number, let xk ∈ H, k = 1, . . . , n be such that

∑n
k=1 xk = 0. Then it is

possible to find a permutation π : {1, . . . , n} → {1, . . . , n} such that∣∣∣∣∣
k∑
j=1

(xπ(j)|y)

∣∣∣∣∣
2

≤
k∑
j=1

|(xπ(j)|y)|2, k = 1, . . . , n ∀y ∈ H .

As this is shown in [3], Lemma 3 is not correct. It follows that the proof of Theorem
3 presented in [8] is not correct as well. Nevertheless, we shall show that the following
refined version of Theorem 3 is valid:

Theorem 4. Let H be a real Hilbert space, and let (xk) be a sequence of elements of H,

Sn =
n∑
k=1

xk, n ∈ N, and S ∈ X. If some subsequence (Skn) of (Sn) converges in the weak

topology of H to S and
∞∑
k=1

‖xk‖2 < ∞, then there exists a permutation π : N → N such

that the series
∞∑
k=1

xπ(k) converges in the topology of H to S.
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2 Steinitz’s range and proofs. For a topological vector space X over R we write
X∗ for the dual space consisting of all continuous linear functionals x∗ : X → R.

To a sequence (xn) extracted from a Hausdorff (locally convex) topological vector
space X let us associate two subsets SR (

∑∞
k=1 xk) and StR (

∑∞
k=1 xk) of X as follows:

• an element x ∈ X belongs to SR(
∑∞

k=1 xk) if there exists a permutation π : N→ N
such that the sequence (

∑n
k=1 xπ(k))n∈N converges in the topology of X to x. The

set SR(
∑∞

k=1 xk) is called the sum range of (xn) (cf. [7, Definition 2.1.1]).

• an element x ∈ X belongs to StR(
∑∞

k=1 xk) if x∗(x) ∈ SR (
∑∞

k=1 x
∗(xk)) for every

x∗ ∈ X∗. The set StR(
∑∞

k=1 xk) is called the Steinitz range of (xn) [4].

For a sequence (xn) extracted from a Hausdorff locally convex topological vector space
X we have:

(a) SR(
∑∞

k=1 xk) ⊂ StR(
∑∞

k=1 xk) (this is evident).

(b) If StR(
∑∞

k=1 xk) 6= ∅, then StR(
∑∞

k=1 xk) is a (weakly) closed affine subspace of X
(this is essentially a consequence of Riemann’s theorem on conditionally convergent
series, see [4, Proposition 2.1]; see also [1, Proposition 1], where this is proved under
the assumption SR(

∑∞
k=1 xk) 6= ∅).

(c) If X is finite-dimensional, then SR(
∑∞

k=1 xk) = StR(
∑∞

k=1 xk) (in view of previous
item it can be said that this is a reformulation of the famous Steinitz’s theorem on
conditionally convergent series).

(d) Let 1 ≤ p <∞ and X = Lp. Suppose that in case 2 ≤ p <∞ we have
∞∑
k=1

‖xk‖2 <

∞, while in case 1 < p ≤ 2 we have

(
∞∑
k=1

x2k

) 1
2

∈ X, then SR(
∑∞

k=1 xk) =

StR(
∑∞

k=1 xk) [9, Theorem 1].

Proof of Theorem 4.
By [9, Theorem 1], it is sufficient to show that S ∈ StR(

∑∞
k=1 xk) . To do this, fix

y ∈ H and let us verify that

(S|y) ∈ SR

(
∞∑
k=1

(xk|y)

)
.

Clearly, some subsequence of the sequence (
∑n

k=1(xk|y))n∈N converges to (S|y); we have
also that limk(xk|y) = 0. So, by one-dimensional version of Theorem 1 there exists a
permutation π : N→ N such that

(S|y) =
∞∑
k=1

(xπ(k)|y) .



22 G. Chelidze at al.

Therefore,

(S|y) ∈ SR

(
∞∑
k=1

(xk|y)

)
From this, since y ∈ H is arbitrary, we get that S ∈ StR(

∑∞
k=1 xk) .
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