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ADAPTIVE MULTISCHEME REFINEMENT FOR LINEAR ADVECTION
EQUATION ON CARTESIAN MESHES IN TWO SPACE DIMENSIONS. ?

Ramaz Botchorishvili Nino Bukuri Hendrik Elbern

Abstract. Multischeme is a smart combination of numerical schemes and meshes. The approach

is developed for time dependent linear advection equation in two space dimensions. Monotone

and MUSCL schemes are coupled with mesh refinement. Convergence of multischemes is proved.

Numerical tests demonstrate efficiency of the developed approach.
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1 Introduction. The initial value problem for the linear advection equation in
two space dimensions in Cartesian coordinates is written

∂u/∂t +∇ · (u−→v ) = 0, u(0, x, y) = u0(x, y), (1)

where u = u(t, x, y), v = (v1(t, x, y), v2(t, x, y))T , t > 0, (x, y) ∈ R2; u0(x, y), v(t, x, y)
are assumed to be sufficiently smooth functions that ensure the solution u(t, x, y) is also
sufficiently smooth. One of the most important applications of this equation is in envi-
ronmental modelling where −→v is interpreted as velocity vector and u is a concentration
of some species, see e.g. [3]. Fast and accurate numerical methods resulting in saving of
computational cost in terms of computing time and computer memory is of great interest
when size of computational domain is big and numerical solution with high accuracy is
needed. Here we propose one of such methods - multischeme for (1). It is extension of the
one dimensional multischeme method for scalar conservation laws [2]. Efficiency of mul-
tischeme is achieved by coupling of numerical schemes of different accuracy and meshes
of different space and time resolution. Explicit first order monotone and high resolution
MUSCL finite volume schemes are considered on uniform Cartesian meshes.

2 Monotone fluxes, slope limiters. Finite volume schemes including first order
monotone and high resolution MUSCL schemes are well documented in the literature [4],
[5]. Standard explicit finite volume discretization of the equation (1) on uniform Cartesian
mesh with time step ∆t, space steps ∆x and ∆y in x and y directions respectively, is
written:
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where Fi∓1/2,j, Gi,j∓1/2 are numerical fluxes approximating uv1 and uv2 at (tn, xi∓1/2,j, yj)
and (tn, xi, yj∓1/2) respectively. The scheme (2) is first order accurate in time in the sense
of local truncation error. Numerical fluxes determine properties of the numerical scheme
(2) such as truncation error due to spatial discretization, conservativeness, stability, con-
vergence. Here we consider monotone numerical fluxes
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where F and G are at least Lipschitz-continuous functions consistent with fluxes of the
equation (1), i.e. uv1 and uv2; they are also monotone, i.e. non increasing with respect
to the first and nondecreasing with respect to the second variable. One of the examples
is Engquist-Osher type flux splitting defined by the following formulas

F (u,w, v1u, v1w) = uv1u + wv1w, G(u,w, v2u, v2w) = uv2u + wv2w,
viu = 0.5(vi − |vi|), viw = 0.5(vi + |vi|), i = 1, 2.

Monotone schemes are first order accurate. For achieving higher order high resolutuion
MUSCL schemes are used based on slope limiters [6] , e.g. defined by
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∆x and ∆y are so called slope limiters, e.g. ∆x
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i,j−1); where minmod(a, b) is 0 if ab < 0
otherwise it returns the argument with smallest modulus.

3 Constructing multischeme: mesh refinement and coupling of schemes.
Strtuctured adaptive mesh refinement algorithm for hyperbolic problems consists of the
fololwing three steps[1]: 1.compute solution on entire coarse grid; 2. compute solution on
entire fine grid; 3. sinchronize coarse and fine grid solutions. Synchronization usually
contains procedures of averaging, interpolation and correction of solutions in cells adja-
cent to different meshes, see e.g. [1]. Multischeme can be interpreted in the framework of
the above general algorithm if first and second steps are exchanged and if synchronization
is defined as computing of solution near interfaces of space-time meshes of different resolu-
tion. Construction of multischeme is simple since it is usual finite volume discretization of
the equation (1) on space time unstructured mesh using different numerical flux functions.
Then general algorithm for multischeme construction is the following: 1. define consis-
tent numerical flux function for each cell interface; 2. perform finite volume discretization
using numerical fluxes defined in the step one. Finding optimal mesh refinement is not
trivial task, it is difficult to assess if efforts spent on optimal meshing will pay out. Though
it is well known that mesh size, gradients and accuracy of computations are correlated. It
is also well known that accurate resolution of big gradients requires fine mesh; finer meshes
are also needed near local extrema points since MUSCL schemes are reduced to the first
order there. Therefore we combine gradients and local extrema into the following simple
mesh refinement and coarsening criteria: 1.refine cells near local extremas or if gradient
is out of predefined interval; 2. merge cells if they do not contain local extremas and if
gradients is in predefined interval. Multischeme uses higher order MUSCL scheme in
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some nodes and lower order monotone schemes in others. We apply higher order schemes
for refined meshes only, see numerical tests. With multischemes one can not perform com-
putations in arbitrary order but certain rules, illustrated in figure 1, should be respected.

tn+Δt

tn+Δt/2

tn+Δt/22

tn+Δt/23

x

tn
Δx Δx/2 Δx/22 Δx/23

Figure 1: Order of time marching

4 Properties of multi-
scheme. It is well known that
monotone schemes and MUSCL
schemes with sufficiently smooth
numerical fluxes are at least first
order accurate in the sense of local
truncation error. Under Courant-
Friedrichs-Levy(CFL) condition
they also ensure uniform bound-
edness of approximate solutions
on any finite time interval. There-
fore multischeme for the linear
advection equation has the same

properties since it can be written in the form of 2 where depending on nodal point’s loca-
tion numerical flux coincides with the one of monotone scheme, with the one of MUSCL
scheme or it can be represented as some linear combination of these fluxes. For the proof
of convergence it remains to apply Lax’s equivalence theorem and we have the following

Theorem 1. Suppose in (1) u0, v1, v2 are sufficiently smooth functions and CFL condition
is satisfied. Then multischeme with monotone numerical fluxes and MUSCL slope limiters
is convergent.

5 Numerical tests. Test problem - moving pyramid with constant speed along
the diagonal is selected for comparing multischeme with other schemes; the pyramid is
defined by initial function u0(x, y) and velocity vector is constant. Calculations of this test
are done by monotone and MUSCL schemes on uniform meshes, as well as with monotone
scheme coupled with mesh refinement and multischeme. Courant-Friedrichs-Levy number
is 0.75 for all calculations. Some results are given on the figure 2. Results of calculations
in terms of number of nodes and norms of errors are summarized in table 1.

Figure 2: Refined meshes and pyramids at two different time moments
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scheme refinement Nbr.nodes err∞ err∞,rel err1 err1,rel
monotone 0,∆/23 3136 0.196258 0.206676 0.129533 0.00301262
MUSCL 0,∆/23 3136 0.121181 0.127614 0.070919 0.0016494
monotone 3 691 0.573156 0.619628 0.534242 0.0125563
monotone 0,∆/26 200704 0.0228918 0.0230713 0.00272841 0.99 ∗ 10−6

MUSCL 0,∆/26 200704 0.0135528 0.013659 0.00179124 0.65 ∗ 10−6

monotone 6 15574 0.234649 0.237619 0.134728 0.49 ∗ 10−6

mulstischeme 6, > 3 10717 0.1393 0.141064 0.0487799 0.17 ∗ 10−6

Table 1: Multischeme vs monotone and MUSCL schemes on uniform and adaptive meshes; no mesh
adaptation if refinement=0, for multischeme finest refinement level is 6 and MUSCL is used when refine-
ment > 3. Multischeme gives better accuracy with significantly smaller number of nodes.
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