BASIC GROUPS OPERATIONS ON EXPONENTIAL MR-GROUPS

Mikheil Amaglobeli

Abstract. In the paper it is proved that the tensor completion is commutative with the operations of direct product and direct limit of exponential MR-groups and, but in general, is not commutative with the Cartesian product and the inverse limit of exponential MR-groups.

Keywords and phrases: Lyndon R-group, MR-group, tensor completion.

The notion of an exponential R-group (R is an arbitrary associative ring with identity) was introduced by R. Lyndon in [1]. In [2] A. G. Myasnikov refined the notion of an exponential R-group by introducing an additional axiom. In particular, the new notion of exponential R-group is a direct generalization of the notion of a R-module to the case of noncommutative groups. With in honour to A. G. Myasnikov, R-group this axiom in M. Amaglobeli’s paper [3] has homed MR-groups. Systematic study of MR-groups has started in [4, 5, 6, 7, 8, 9]. Note that the results of the study were very useful for solving the well-known problems of Tarski. In paper [2] it is shown that in the investigation of exponential MR-group the decisive role is played by the notion of tensor completion. In this paper we investigate the problem of the commutability of a functor of tensor completion with basic groups operations.

1 Basic notions in the theory of exponential MR-groups. Recall the basic definitions (see [1, 2]). Let R be an arbitrary associative ring with identity and let G be a group. Fix an action of the ring R on G, i.e. a map $G \times R \to G$. The result of the action of $\alpha \in R$ on $g \in G$ is written as g^α. Consider the following axioms:

(i) $g^1 = g$, $g^0 = e$, $e^\alpha = e$ ($1 \in R$, $e \in G$);
(ii) $g^{\alpha + \beta} = g^\alpha \cdot g^\beta$, $g^{\alpha \beta} = (g^\alpha)^\beta$;
(iii) $(h^{-1}gh)^\alpha = h^{-1}g^\alpha h$;
(iv) $[g, h] = e \implies (gh)^\alpha = g^\alpha h^\alpha$ (MR-axiom).

Definition 1 ([1]). The group G is called an exponential R-group (or R-group) after Lyndon if an action of the ring R on G satisfying axioms (i)–(iii) is given.

Definition 2 ([2]). The group G is called an exponential R-group (or MR-group) if an action of the ring R on G satisfies axioms (i)–(iv). Then R is called a ring of scalars of the group G.
Let \(\mathcal{L}_R \) and \(\mathcal{M}_R \) be the classes of all exponential \(R \)-group after Lyndon and all \(MR \)-groups, \(\mathcal{L}_R \supseteq \mathcal{M}_R \). Any Abelian \(MR \)-group is an \(R \)-module, and vice versa. There exist Abelian Lyndon \(R \)-groups that are not \(R \)-modules (see [10], where the structure of free abelian \(R \)-group is extensively investigated), i.e. \(\mathcal{L}_R \supset \mathcal{M}_R \).

Most of natural examples of exponential \(R \)-groups lie in \(\mathcal{M}_R \). For example, unipotent groups over a field \(K \) of zero characteristic are \(MR \)-groups, pro-\(p \)-groups are exponential \(M\mathbb{Z}_p \)-groups over the ring \(\mathbb{Z}_p \) of \(p \)-adic integers, etc (see [2] for examples).

Definition 3 ([2]). A homomorphism of \(R \)-groups \(\varphi : G \to H \) will be called an \(R \)-homomorphism if \(\varphi(g^\alpha) = \varphi(g)^\alpha \), \(g \in G, \alpha \in R \).

For basic definitions in category \(\mathcal{M}_R \) and results concerning exponential \(MR \)-group see [2].

Let \(R \) be an arbitrary associative ring unit. Then the class \(\mathcal{M}_R (\mathcal{L}_R) \) is a category in which morphisms are \(R \)-homomorphism of groups.

Below we prove that the classes \(\mathcal{L}_R \) and \(\mathcal{M}_R \) are closed un under direct and Cartesian products and under direct and inverse limits.

Let \(G_i \in \mathcal{L}_R, i \in I \). We denote by \(\prod G_i \) and \(\prod G_i \), respectively, the Cartesian and direct products of the groups \(G_i \). Let \(g \in \prod G_i, g = (\ldots, g_i, \ldots) \), and \(\alpha \in R \). We define an action of \(R \) on \(G \) by the coordinate-wise rule \(g^\alpha = (\ldots, g_i^\alpha, \ldots) \). It can be immediately proved that if all groups \(G_i \) satisfy one of axioms (i)–(iv), then the groups \(\prod G_i \) and \(\prod G_i \), also satisfy this axiom. Thus, we have proved

Proposition 1. The classes \(\mathcal{L}_R \) and \(\mathcal{M}_R \) are closed with respect to direct and Cartesian product.

If in the standard definitions of direct and inverse spectrums one considers only \(R \)-homomorphisms then it is not difficult to prove

Proposition 2. The classes \(\mathcal{L}_R \) and \(\mathcal{M}_R \) are closed with respect to direct and inverse limits.

It is proved in [11] that in Abelian group category the operations of direct product of groups, of direct and inverse limits have a universal property. The corresponding actions in exponential \(MR \)-group category have analogous properties.

Definition 4 ([2]). Let \(G \) be an \(MR \)-group and let \(\mu : R \to S \) be a homomorphism of rings. Then a \(S \)-group \(G^{S,\mu} \) is called the tensor \(S \)-completion of an \(MR \)-group \(G \), if \(G^{S,\mu} \) satisfies the following universal property:

1. there exists and \(R \)-homomorphism \(\lambda : G \to G^{S,\mu} \) such that \(\lambda(G) \) \(S \)-generators \(G_{s,\mu} \), i.e. \(\langle \lambda(G) \rangle = G^{S,\mu} \);
2. for any \(S \)-group \(H \) and any \(R \)-homomorphism \(\varphi : G \to H \) coordinated with \(\mu \) (that \(\varphi(g^\alpha) = \varphi(g)^{\mu(\alpha)} \)) there exists a \(S \)-homomorphism \(\psi : G^{S,\mu} \to H \), rendering the
following diagram commutative:

\[
\begin{array}{ccc}
G & \xrightarrow{\lambda} & G^{S,\mu} \\
\varphi \downarrow & & \downarrow \exists \psi \\
H & \xrightarrow{\phi = \lambda \psi} & G^S
\end{array}
\]

Note that if \(G \) is an Abelian MR-group, then \(G^{S,\mu} \cong G \otimes_S R \) is a tensor product of an \(R \)-module \(G \) by a ring \(S \). In [2] it is proved that for any MR-group \(G \) and any homomorphism \(\mu : R \to S \) the tensor completion \(G^{S,\mu} \) always exists and it is unique to written an isomorphism.

2 Commutation of the functor of tensor completion with basic group operations. Let \(G_i \in \mathfrak{M}_R, i \in I \).

Theorem 1. If \(G = \prod_i G_i \), then \(G^S = \prod_i G^S_i \).

Theorem 2. If \(G_* = \lim_i G_i \), then \(G_*^S = \lim_i G_i^S \).

Remark 1. Let us give an example showing that the operation of Cartesian product is not commutable with the operation of tensor completion. Denote \(\lambda : \prod_i G_i \to \prod_i G_i^S \).

Then by the universal property of tensor completion, we have a \(S \)-homomorphism \(\lambda^* : (\prod_i G_i)^S \to \prod_i G_i^S \), which is not an isomorphism in the general case. Such an example exists in the theory of Abelian groups. Let us take the field of rational numbers \(\mathbb{Q} \) as the ring \(R \) a cyclic group of order \(n \) as \(G_n \). Let \(G_n = \langle a_n \rangle, n \in \mathbb{N} \). Then \(G_n^\mathbb{Q} = G_n \otimes \mathbb{Q} = 0 \).

Therefore, \(\prod_n G_n^\mathbb{Q} = 0 \). At the same time there exist elements of infinite order in the group \(\prod_n G_n \), therefore the group \((\prod_n G_n)^\mathbb{Q} = \prod_n G_n \otimes \mathbb{Q} \) is nonzero.

Remark 2. Let \(G_* \) be the limits group of inverse spectrum \(\mathbb{G}^* = \{ G_i, i \in I, \pi^i \} \).

By the use of universal property of inverse limit we shall construct a \(S \)-homomorphism \(\sigma : (G^*)^S \to \lim_i G_i^S \). To do this we denote by \(\pi_i : G^* \to G_i \) the projection of the limit group onto the component with index \(i \). Then \(\pi_i^* : (G^*)^S \to G_i^S \) is the corresponding homomorphism of a tensor completion. Let \(\mu_i : \lim_i G_i^S \to G_i^S \) be a natural project.

Then according to universal property of inverse limits, there exists a homomorphism \(\sigma : (G^*)^S \to \lim_i G_i^S \), making the diagram

\[
\begin{array}{ccc}
(G^*)^S & \xrightarrow{\sigma} & \lim_i G_i^S \\
\downarrow \pi_i^* & & \downarrow \mu_i \\
G_i^S & &
\end{array}
\]
We shall demonstrate with an example that this homomorphism σ is not isomorphism in the general case. Let us consider G_n, $n \in \mathbb{N}$, $G_n = \langle a_n \rangle$, where a_n is an element of order p^n, p is a prime number. Then it is known that $\lim_{n \to \infty} G_n \cong \mathbb{Z}_{p^\infty}$, \mathbb{Z}_{p^∞} is the additive group of integral p-adic numbers, $\mathbb{Z}_p^\infty = \mathbb{Z}_{p^\infty} \otimes \mathbb{Q}$ is a vector space over \mathbb{Q} of continual cardinality. At the same time $\lim_{n \to \infty} G_n^\mathbb{Q} = \lim_{n \to \infty} (G_n \otimes \mathbb{Q}) = \lim_{n \to \infty} 0$.

REFERENCES