Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 31, 2017

BASIC GROUPS OPERATIONS ON EXPONENTIAL MR-GROUPS

Mikheil Amaglobeli

Abstract. In the paper it is proved that the tensor completion is commutative with the operations of direct product and direct limit of exponential MR-groups and, but in general, is not commutative with the Cartesian product and the inverse limit of exponential MR-groups.

Keywords and phrases: Lyndon R-group, MR-group, tensor completion.

AMS subject classification (2010): 20B07.

The notion of an exponential R-group (R is an arbitrary associative ring with identity) was introduced by R. Lyndon in [1]. In [2] A. G. Myasnikov refined the notion of a exponential R-group by introducing an additional axiom. In particular, the new notion of exponential R-group is a direct generalization of the notion of a R-module to the case of noncommutative groups. With in honour to A. G. Myasnikov, R-group this axiom in M. Amaglobeli's paper [3] has homed MR-groups. Systematic study of MR-groups has started in [4, 5, 6, 7, 8, 9]. Note that the results of the study were very useful for solving the well-known problems of Tarski. In paper [2] it is shown that in the investigation of exponential MR-group the decisive role is played by the notion of tensor completion. In this paper we investigate the problem of the commutability of a functor of tensor completion with basic groups operations.

1 Basic notions in the theory of exponential MR-groups. Recall the basic definitions (see [1, 2]). Let R be an arbitrary associative ring with identity and let G be a group. Fix an action of the ring R on G, i.e. a map $G \times R \to G$. The result of the action of $\alpha \in R$ on $g \in G$ is written as g^{α} . Consider the following axioms:

(i) $g^{1} = g, g^{0} = e, e^{\alpha} = e \ (1 \in R, e \in G);$ (ii) $g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, g^{\alpha\beta} = (g^{\alpha})^{\beta};$ (iii) $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h;$

(iv) $[g,h] = e \Longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha}$ (*MR*-axiom).

Definition 1 ([1]). The group G is called an **exponential** R-group (or R-group) after Lyndon if an action of the ring R on G satisfying axioms (i)–(iii) is given.

Definition 2 ([2]). The group G is called an **exponential** R-group (or MR-group) if an action of the ring R on G satisfies axioms (i)–(iv). Then R is called a ring of scalars of the group G.

Let \mathfrak{L}_R and \mathfrak{M}_R be the classes of all exponential *R*-group after Lyndon and all *MR*groups. $\mathfrak{L}_R \supseteq \mathfrak{M}_R$. Any Abelian *MR*-group is an *R*-module, and vice versa. There exist Abelian Lyndon *R*-groups that are not *R*-modules (see [10], where the structure of free abelian *R*-group is extensively investigated), i.e. $\mathfrak{L}_R \supset \mathfrak{M}_R$.

Most of natural examples of exponential R-groups lie in \mathfrak{M}_R . For example, unipotent groups over a field K of zero characteristic are MR-groups, pro-p-groups are exponential \mathbb{MZ}_p -groups over the ring \mathbb{Z}_p of p-adic integers, etc (see [2] for examples).

Definition 3 ([2]). A homomorphism of *R*-groups $\varphi : G \to H$ will be called an *R*-homomorphism if $\varphi(g^{\alpha}) = \varphi(g)^{\alpha}, g \in G, \alpha \in R$.

For basic definitions in category \mathfrak{M}_R and results concerning exponential MR-group see [2].

Let R be an arbitrary associative ring unit. Then the class $\mathfrak{M}_R(\mathfrak{L}_R)$ is a category in which morphisms are R-homomorphism of groups.

Below we prove that the classes \mathfrak{L}_R and \mathfrak{M}_R are closed un under direct and Cartesian products and under direct and inverse limits.

Let $G_i \in \mathfrak{L}_R$, $i \in I$. We denote by $\overline{\prod} G_i$ and $\prod G_i$, respectively, the Cartesian and direct products of the groups G_i . Let $g \in \overline{\prod} G_i$, $g = (\ldots, g_i, \ldots)$, and $\alpha \in R$. We define an action of R on G by the coordinate-wise rule $g^{\alpha} = (\ldots, g_i^{\alpha}, \ldots)$. It can be immediately proved that if all groups G_i satisfy one of axioms (i)–(iv), then the groups $\overline{\prod} G_i$ and $\prod G_i$, also satisfy this axiom. Thus, we have proved

Proposition 1. The classes \mathfrak{L}_R and \mathfrak{M}_R are closed with respect to direct and Cartesian product.

If in the standard definitions of direct and inverse spectrums one considers only R-homomorphisms then it is not difficult to prove

Proposition 2. The classes \mathfrak{L}_R and \mathfrak{M}_R are closed with respect to direct and inverse limits.

It is proved in [11] that in Abelian group category the operations of direct product of groups, of direct and inverse limits have a universal property. The corresponding actions in exponential MR-group category have analogous properties.

Definition 4 ([2]). Let G be an MR-group and let $\mu : R \to S$ be a homomorphism of rings. Then a S-group $G^{S,\mu}$ is called the **tensor** S-completion of an MR-group G, if $G^{S,\mu}$ satisfies the following universal property:

- (1) there exists and *R*-homomorphism $\lambda : G \to G^{S,\mu}$ such that $\lambda(G)$ S-generators $G_{s,\mu}$, i.e. $\langle \lambda(G) \rangle = G^{S,\mu}$;
- (2) for any S-group H and any R-homomorphism $\varphi: G \to H$ coordinated with μ (that $\varphi(g^{\alpha}) = \varphi(g)^{\mu(\alpha)}$) there exists a S-homomorphism $\psi: G^{S,\mu} \to H$, rendering the

following diagram commutative:

$$\begin{array}{c|c} G & \xrightarrow{\lambda} & G^{S,\mu} \\ \varphi & & \swarrow \\ H & & \exists \psi \end{array} \quad (\varphi = \lambda \psi). \end{array}$$

Note that if G is an Abelian MR-group, then $G^{S,\mu} \cong G \bigotimes_R S$ is a tensor product of an R-module G by a ring S. In [2] it is proved that for any MR-group G and any homomorphism $\mu : R \to S$ the tensor completion $G^{S,\mu}$ always exists and it is unique to written an isomorphism.

2 Commutation of the functor of tensor completion with basic group operations. Let $G_i \in \mathfrak{M}_R, i \in I$.

Theorem 1. If $G = \prod_i G_i$, then $G^S = \prod_i G_i^S$.

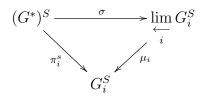
Theorem 2. If $G_* = \lim_{i \to i} G_i$, then $G_*^S = \lim_{i \to i} G_i^S$.

Remark 1. Let us give an example showing that the operation of Cartesian product is not commutable with the operation of tensor completion. Denote $\lambda : \prod_i G_i \to \prod_i G_i^S$. Then by the universal property of tensor completion, we have a *S*-homomorphism $\lambda^s :$ $(\prod_i G_i)^S \to \prod_i G_i^S$, which is not an isomorphism in the general case. Such an example exists in the theory of Abelian groups. Let us take the field of rational numbers \mathbb{Q} as the ring *R* a cyclic group of order *n* as G_n . Let $G_n = \langle a_n \rangle$, $n \in \mathbb{N}$. Then $G_n^{\mathbb{Q}} = G_n \otimes \mathbb{Q} = 0$. Therefore, $\prod_i G_n^{\mathbb{Q}} = 0$. At the same time there exist elements of infinite order in the group $\prod_i G_n$, therefore the group $(\prod_i G_n)^{\mathbb{Q}} = \prod_i G_n \otimes \mathbb{Q}$ is nonzero.

Remark 2. Let G^* be the limits group of inverse spectrum $\mathbb{G}^* = \{G_i, i \in I, \pi_i^j\}$. By the use of universal property of inverse limit we shall construct a S-homomorphism $\sigma : (G^*)^S \to \lim_{i \to i} G_i^S$. To do this we denote by $\pi_i : G^* \to G_i$ the projection of the limit

group onto the component with index *i*. Then $\pi_i^s : (G^*)^S \to G_i^S$ is the corresponding homomorphism of a tensor completion. Let $\mu_i : \lim_{\leftarrow} G_i^S \to G_i^S$ be a natural project.

Then according to universal property of inverse limits, there exists a homomorphism $\sigma: (G^*)^S \to \lim_{\stackrel{\leftarrow}{i}} G^S_i$, making the diagram



commutative.

We shall demonstrate with an example that this homomorphism σ is not isomorphism in the general case. Let us consider G_n , $n \in \mathbb{N}$, $G_n = \langle a_n \rangle$, where a_n is an element of order p^n , p is a prime number. Then it is known that $\lim_{\substack{\leftarrow n \\ n}} G_n \cong \mathbb{Z}_{p^{\infty}}$, $\mathbb{Z}_{p^{\infty}}$ is the additive group of integral p-adic numbers, $\mathbb{Z}_{p^{\infty}}^{\mathbb{Q}} = \mathbb{Z}_{p^{\infty}} \otimes \mathbb{Q}$ is a vector space over \mathbb{Q} of continual cardinality. At the same time $\lim_{\substack{\leftarrow n \\ n}} G_n^{\mathbb{Q}} = \lim_{\substack{\leftarrow n \\ n}} (G_n \otimes \mathbb{Q}) = \lim_{\leftarrow n} o = 0.$

REFERENCES

- 1. LYNDON, R.C. Groups with parametric exponents. Trans. Amer. Math. Soc., 96 (1960), 518-533.
- MYASNIKOV, A.G., REMESLENNIKOV, V.N. Degree groups. I. Foundations of the theory and tensor completions (Russian). Sibirsk. Mat. Zh., 35, 5 (1994), 1106-1118; translation in Siberian Math. J., 35, 5 (1994), 986-996.
- AMAGLOBELI, M. Precise exponential MR-groups. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 28 (2014), 1-4.
- 4. MYASNIKOV, A.G., REMESLENNIKOV, V.N. Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups. *Inter. J. Algebra Comput.*, 6, 6 (1996), 687-711.
- BAUMSLAG, G., MYASNIKOV, A., REMESLENNIKOV, V. Discriminating completions of hyperbolic groups. Dedicated to John Stallings on the occasion of his 65th birthday. *Geom. Dedicata*, 92 (2002), 115-143.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Free nilpotent *R*-groups of class 2 (Russian). Dokl. Akad. Nauk, 443, 4 (2012), 410-413; translation in Dokl. Math., 85, 2 (2012), 236-239.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Extension of a centralizer in nilpotent groups (Russian). Sibirsk. Mat. Zh., 54, 1 (2013), 8-19.
- AMAGLOBELI, M., REMESLENNIKOV, V. Algorithmic problems for class-2 nilpotents MR-groups. Georgian Math. J., 22, 4 (2015), 441-449.
- AMAGLOBELI, M.G., REMESLENNIKOV, V.N. Fundamentals of the theory of varieties of nilpotent MR-groups (Russian). Sib. Mat. Zh., 57, 6 (2016), 1197-1207; translation in Sib. Math. J., 57, 6 (2016), 935-942.
- 10. BAUMSLAG, G. Free Abelian X-groups. Illinois J. Math., 30, 2 (1986), 235-245.
- FUCHS, L. Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics, Vol. 36 Academic Press, New York-London, 1970.

Received 20.05.2017; revised 30.09.2017; accepted 10.10.2017.

Author(s) address(es):

Mikheil Amaglobeli I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: mikheil.amaglobeli@tsu.ge