Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 30, 2016

ON THE SOLUTION OF THE NON-CLASSICAL PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE IN A CIRCULAR DOMAIN

Kosta Svanadze

Abstract. In the paper for the homogeneous equation of statics of the linear theory of elastic mixture in a circle one non-classical problem is solved, which for the case of a circular domain is analogous to non-classical problems for harmonic and biharmonic equations considered by A. Bitsadze. The solution is represented by absolutely and uniformly convegent series.

Keywords and phrases: Elastic mixture, Kolosov-Muskhelishvili type formulas, Fourier series, non-classical problem.

AMS subject classification (2010): 74B05.

1 Introduction. The basic two-dimensional boundary value problems statics of the linear theory of elastic mixtures are studied in [1], [2], [5] and also by many other authors.

In the monograph [3] A. Bitsadze considered the non-classical boundary value problem in a circle for a harmonic equation in case of the Dirichlet problem. In this work we consider the non-classical boundary value problem in the circle for the homogeneous equation of statics of the linear theory of elastic mixture.

2 Basic equation and boundary value problem. The homogeneous equation of static of the linear theory of elastic mixture compex form is written as [2]

$$\frac{\partial^2 U}{\partial z \partial \overline{z}} + K \frac{\partial^2 \overline{U}}{\partial \overline{z^2}} = 0, \qquad U = \begin{pmatrix} u_1 + iu_2 \\ u_3 + iu_4 \end{pmatrix},\tag{1}$$

where u_p , $p = \overline{1, 4}$, are components of the displacement vector, $z = x_1 + ix_2$,

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right),$$

$$K = -\frac{1}{2}lm^{-1}, \quad l = \begin{bmatrix} l_4 & l_5 \\ l_5 & l_6 \end{bmatrix}, \quad m^{-1} = \begin{bmatrix} m_1 & m_2 \\ m_2 & m_3 \end{bmatrix}^{-1}, \quad det \ |m| > 0.$$

 m_k , l_{3+k} , k = 1, 2, 3 are expressed in terms of elastic constants [2] or [5].

The following formulas are valid [1]

$$\frac{2(m_1 + X_j m_2)}{l_4 + X_j l_5} = \frac{2(m_2 + X_j m_3)}{l_5 + X_j l_6} = -\frac{1}{K_j}, \quad K_j \neq 0, \quad |K_j| < 1, \quad j = 1, 2,$$
(2)

where $X_i (j = 1, 2)$ is a real constant, $X_1 - X_2 \neq 0$.

In [2] M. Basheleischvili obtained the following representations (Kolosov-Muskhelishvili type formulas)

$$U = \begin{pmatrix} u_1 + iu_2 \\ u_3 + iu_4 \end{pmatrix} = m\varphi(z) + \frac{1}{2}lz\overline{\varphi'(z)} + \overline{\psi(z)},$$
(3)

$$TU = \begin{pmatrix} (Tu)_2 - i(Tu)_1\\ (Tu)_4 - i(Tu)_3 \end{pmatrix} = \frac{\partial}{\partial S(x)} \left(-2\varphi(z) + 2\mu U(x)\right)$$

where $\varphi = (\varphi_1 \varphi_2)^T$ and $\psi = (\psi_1, \psi_2)^T$ are arbitrary analytic vector-functions; $(TU)_p$, $p = \overline{1, 4}$ are components of the stress vector [5],

$$\mu = \begin{bmatrix} \mu_1 \mu_3 \\ \mu_3 \mu_2 \end{bmatrix}, \qquad m = \begin{bmatrix} m_1 m_2 \\ m_2 m_3 \end{bmatrix}, \quad det|\mu| > 0$$

 $\frac{\partial}{\partial S(x)} = n_1 \frac{\partial}{\partial x_2} - n_2 \frac{\partial}{\partial x_1}, \quad n = (n_1, n_2)^T$ is the unit vector of the outer normal. The following Green formula is valid [5]

$$\int_{D} E(u, u) dx = I_m \int_{S} U \overline{TU} ds, \qquad (4)$$

where D is a circular domain D = (|z| < 1) and S is a boundary of D, E(u, u) is the positively defined quadratic form. The equation E(u, u) = 0 admits the solution

$$U = \begin{pmatrix} u_1 + iu_2 \\ u_3 + iu_4 \end{pmatrix} = \nu + i\varepsilon \begin{pmatrix} 1 \\ 1 \end{pmatrix} z, \quad z = x_1 + ix_2, \tag{5}$$

where $\nu = (\nu_1, \nu_2)^T$ is an arbitrary complex vector and ε is an arbitrary real constant.

Let us formulate the non-classical boundary value problem in the circular domain D. Find a vector $U = (u_1 + iu_2, u_3 + iu_4)^T$ which belongs to the class $C^2(D) \bigcap C^{1,\alpha}(D \bigcup S)$, is a solution of equation (1) and satisfies the following boundary condition

$$U(e^{i\theta}) - U(\delta e^{i\theta}) = f(e^{i\theta}), \quad 0 \le \theta \le 2\pi, \quad 0 < \delta < 1,$$
(6)

where $f = (f_1, f_2)^T$ is a given vector-function, below we assume that f'' belongs to the Dirichlet class.

Using the Green formula (4) it is easy to prove (see(5)).

Theorem. Two arbitrary regular solutions of problem (1), (6) differ from each other only by a constant vector.

On the basis of formula $(3)_1$ our problem (1), (6) is reduced to finding two analytic vector-functions $\varphi(z)$ and $\psi(z)$ in D by the boundary condition

$$m\varphi(t) + \frac{1}{2}lt\overline{\varphi'(t)} + \overline{\psi(t)} - m\varphi(\delta t) - \frac{1}{2}l \ \delta t\overline{\varphi'(\delta t)} - \overline{\psi(\delta t)} = f(t),$$

(7)

 $t = e^{i\theta}, \quad 0 \le \theta \le 2\pi, \quad 0 < \delta < 1.$

Let us expand the boundary vector-function $f(e^{i\theta})$ into the Fourier series

$$f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} A_n e^{in\theta}, \quad 0 \le \theta \le 2\pi,$$
(8)

where $A_n = (A_{n_1}, A_{n_2})^T$ is a known coefficient.

We look for the vector-function $\varphi(z)$ and $\psi(z)$ in the following form [4]

$$\varphi(z) = \sum_{k=1}^{\infty} a_k z^k, \quad \psi(z) = \sum_{k=0}^{\infty} b_k z^k, \tag{9}$$

where $a_k = (a_{k_1}, a_{k_2})^T$ and $b_k = (b_{k_1}, b_{k_2})^T$ are unknown coefficients.

Taking into account (8) and (9) in (7) we obtain the following system of equations for unknown coefficients:

$$ma_1 + \frac{1}{2}l\overline{a_1} = \frac{1}{1-\delta}A_1,$$
 (10)

$$m(1-\delta^n)a_n = A_n, \quad (n > 1),$$
 (11)

$$\frac{1}{2}l(1-\delta^{n+2})\overline{a_{n+2}} + (1-\delta^n)\overline{b_n} = A_{-n}, \quad (n \ge 0).$$
(12)

It is evindent that from the systems (11) and (12) the coefficitns $a_n(n > 1)$ and $b_n(n \ge 0)$ are defined uniquely.

Using (2) we determine the coefficient a_1 . The system (10) can be rewritten as follows

$$(a_1 - K_j \overline{a_1}) \begin{pmatrix} m_1 + X_j m_2 \\ m_2 + X_j m_3 \end{pmatrix} = \frac{A_1}{1 - \delta} \begin{pmatrix} 1 \\ X_j \end{pmatrix}, \quad j = 1, 2,$$
(13)

whence we have

$$\left(\overline{a_1} - K_j a_1\right) \begin{pmatrix} m_1 + X_j m_2 \\ m_2 + X_j m_3 \end{pmatrix} = \frac{\overline{A_1}}{1 - \delta} \begin{pmatrix} 1 \\ X_j \end{pmatrix}, \quad j = 1, 2.$$
(14)

from (13) and (14) we'll have

$$\begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix} \begin{pmatrix} m_1 + X_j m_2 \\ m_2 + X_j m_3 \end{pmatrix} = \frac{1}{(1 - \delta)(1 - K_j^2)} (A_1 + K_j \overline{A_1}) \begin{pmatrix} 1 \\ X_j \end{pmatrix}, \quad j = 1, 2.$$
(15)

Remarking that determinant of the system (15) is equal to $(X_2 - X_1)det|m|$ and different from zero. Consequently, the coefficient $a_1 = (a_{11}, a_{12})^T$ is defined uniquely.

By the above given reasoning we have the coefficients $a_n (n \ge 1)$ and $b_n (n \ge 0)$ are defined uniquely by means of Fourier coefficients of the $f(e^{i\theta})$. Further, note that f'' belong to the Dirichlet class (see 2^0).

Having found the coefficients $a_n (n \ge 1)$ and $b_n (n \ge 0)$ using formulas (9) we can find $\varphi(z)$ and $\psi(z)$ given by absolutely and uniformly convergent series (see [4]).

Using the expressions of the above-mentioned vector-functions and substituting them into the expression for the displacement vector (see $(3)_1$ we obtain the solution of the posed problem given by absolutely and uniformly convergent series.

REFERENCES

- BASHELEISHVILI, M. Application of analogues of general Kolosov-Muskhelishvili representations in the theory of elastic mixtures. *Georgian Math. J.*, 6, 1 (1999), 1-18.
- 2. BASHELEISHVILI, M., SVANADZE K. A new method of solving the basic plane boundary value problems of statics of the elastic mixture theory. *Georgian Math. J.*, 8, 3 (2001), 427-446.
- 3. BITSADZE, A. Some Classes of Partial Differential Equations (Russian). Moscow, 1981.
- 4. MUSKHELISHVILI, N. Some Basic Problems of the Mathematical Theory of Elasticity (Russian). Moscow, 1966.
- SVANADZE, K. Solution of the basic plane boundary value problems of statics of the elastic mixture for a multiply connected domain by the method of D. Sherman. Semin. I. Vekua Inst. Appl. Math. Rep., 39 (2013), 58-71.

Received 30.05.2016; revised 30.11.2016; accepted 28.12.2016.

Author(s) address(es):

Kosta Svanadze A. Tsereteli Kutaisi State University Tamar Mepe str. 59, 4600 Kutaisi, Georgia E-mail: kostasvanadze@yahoo