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Abstract. In the paper for the homogeneous equation of statics of the linear theory of elastic

mixture in a circle one non-classical problem is solved, which for the case of a circular domain

is analogous to non-classical problems for harmonic and biharmonic equations considered by

A. Bitsadze. The solution is represented by absolutely and uniformly convegent series.
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1 Introduction. The basic two-dimesional boundary value problems statics of the
linear theory of elastic mixtures are studied in [1], [2], [5] and also by many other authors.

In the monograph [3] A. Bitsadze considered the non-classical boundary value problem
in a circle for a harmonic equation in case of the Dirichlet problem. In this work we
consider the non-classical boundary value problem in the circle for the homogeneous
equation of statics of the linear theory of elastic mixture.

2 Basic equation and boundary value problem. The homogeneous equation
of static of the linear theory of elastic mixture compex form is written as [2]
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where up, p = 1, 4, are components of the displacement vector, z = x1 + ix2,
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, det |m| > 0,

mk, l3+k, k = 1, 2, 3 are expressed in terms of elastic constants [2] or [5].
The following formulas are valid [1]
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, Kj ̸= 0, |Kj| < 1, j = 1, 2, (2)
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where Xj(j = 1, 2) is a real constant, X1 −X2 ̸= 0.
In [2] M. Basheleischvili obtained the following representations (Kolosov-Muskhelishvili

type formulas)
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lzφ′)z) + ψ(z),

(3)
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)
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where φ = (φ1φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions; (TU)p,
p = 1, 4 are components of the stress vector [5],
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T is the unit vector of the outer normal.

The following Green formula is valid [5]∫
D

E(u, u)dx = Im

∫
S

UTUds, (4)

where D is a circular domain D = (|z| < 1) and S is a boundary of D, E(u, u) is the
positively defined quadratic form. The equation E(u, u) = 0 admits the solution

U =

(
u1 + iu2
u3 + iu4

)
= ν + iε

(
1
1

)
z, z = x1 + ix2, (5)

where ν = (ν1, ν2)
T is an arbitrary complex vector and ε is an arbitrary real constant.

Let us formulate the non-classical boundary value problem in the circular domain D.
Find a vector U = (u1 + iu2, u3 + iu4)

T which belongs to the class C2(D)
∩
C1,α(D

∪
S),

is a solution of equation (1) and satisfies the following boundary condition

U(eiθ)− U(δeiθ) = f(eiθ), 0 ≤ θ ≤ 2π, 0 < δ < 1, (6)

where f = (f1, f2)
T is a given vector-function, below we assume that f

′′
belongs to the

Dirichlet class.
Using the Green formula (4) it is easy to prove (see(5)).

Theorem. Two arbitrary regular solutions of problem (1),(6) differ from each other only
by a constant vector.

On the basis of formula (3)1 our problem (1), (6) is reduced to finding two analytic
vector-functions φ(z) and ψ(z) in D by the boundary condition

mφ(t) +
1

2
ltφ′(t) + ψ(t)−mφ(δt)− 1

2
l δtφ′(δt)− ψ(δt) = f(t),
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(7)

t = eiθ, 0 ≤ θ ≤ 2π, 0 < δ < 1.

Let us expand the boundary vector-function f(eiθ) into the Fourier series

f(eiθ) =
∞∑

n=−∞

Ane
inθ, 0 ≤ θ ≤ 2π, (8)

where An = (An1 , An2)
T is a known coefficient.

We look for the vector-function φ(z) and ψ(z) in the following form [4]

φ(z) =
∞∑
k=1

akz
k, ψ(z) =

∞∑
k=0

bkz
k, (9)

where ak = (ak1 , ak2)
T and bk = (bk1 , bk2)

T are unknown coefficients.
Taking into account (8) and (9) in (7) we obtain the following system of equations for

unknown coefficitns:

ma1 +
1

2
la1 =

1

1− δ
A1, (10)

m(1− δn)an = An, (n > 1), (11)

1

2
l(1− δn+2)an+2 + (1− δn)bn = A−n, (n ≥ 0). (12)

It is evindent that from the systems (11) and (12) the coefficitns an(n > 1) and
bn(n ≥ 0) are defined uniquely.

Using (2) we determine the coefficient a1. The system (10) can be rewritten as follows
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)
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)
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whence we have
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)
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)
, j = 1, 2. (14)

from (13) and (14) we’ll have(
a11
a12

)(
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)
=

1
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j )
(A1 +KjA1)
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)
, j = 1, 2. (15)

Remarking that determinant of the system (15) is equal to (X2 − X1)det|m| and
different from zero. Consequently, the coefficient a1 = (a11, a12)

T is defined uniquely.
By the above given reasoning we have the coefficients an(n ≥ 1) and bn(n ≥ 0) are

defined uniquely by means of Fourier coefficients of the f(eiθ). Further, note that f
′′

belong to the Dirichlet class (see 20).



On the Solution of the Non-Classical Problem of .... 101

Having found the coefficients an(n ≥ 1) and bn(n ≥ 0) using formulas (9) we can find
φ(z) and ψ(z) given by absolutely and uniformly convergent series (see [4]).

Using the expressions of the above-mentioned vector-functions and substituting them
into the expression for the displacement vector (see (3)1 we obtain the solution of the
posed problem given by absolutely and uniformly convergent series.
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