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ON THE SPACE OF SPHERICAL POLYNOMIAL WITH QUADRATIC FORMS OF
ANY NUMBER OF VARIABLES

Ketevan Shavgulidze

Abstract. The spherical polynomials of order ν with respect to the quadratic form of r variables

are constructed and the basis of the space of these spherical polynomials is established. The

space of generalized theta-series with respect to the quadratic form of r variables is considered.
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1 Introduction. Let

Q(X) = Q(x1, · · · , xr) =
∑

1≤i≤j≤r

bijxixj

be an integer positive definite quadratic form of r variables and let A = (aij) be the
symmetric r × r matrix of quadratic form Q(X), where aii = 2bii and aij = aji = bij, for
i < j. Let Aij denote the cofactor to the element aij in A and a∗ij is the element of the
inverse matrix A−1.

A homogeneous polynomial P (X) = P (x1, · · · , xr) of degree ν with complex coeffi-
cients, satisfying the condition ∑

1≤i,j≤r

a∗ij

( ∂2P

∂xi∂xj

)
= 0 (1)

is called a spherical polynomial of order ν with respect to Q(X) (see [1]), and

ϑ(τ, P,Q) =
∑
n∈Zr

P (n)zQ(n), z = e2πiτ , τ ∈ C, Im τ > 0

is the corresponding generalized r-fold theta-series.
Let P (ν,Q) denote the vector space over C of spherical polynomials P (X) of even

order ν with respect to Q(X). Hecke [2] calculated the dimension of the space P (ν,Q),
dimP (ν,Q) =

(
ν+r−1
r−1

)
−
(
ν+r−3
r−1

)
and form the basis of the space of spherical polynomials

of second order with respect to Q(X). For ν = 4, Lomadze [3] constructs the basis of the
space of spherical polynomials of fourth order with respect to Q(X).

Let T (ν,Q) denote the vector space over C of generalized multiple theta-series, i.e.,

T (ν,Q) = {ϑ(τ, P,Q) : P ∈ P(ν,Q)}.
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Gooding [1] calculated the dimension of the vector space T (ν,Q) for reduced binary
quadratic forms Q. Gaigalas [4] gets the upper bounds for the dimension of the space
T (4, Q) and T (6, Q) for some diagonal quadratic forms. In [5-7] we established the upper
bounds for the dimension of the space T (ν,Q) for some quadratic forms of r variables,
when r = 3, 4, 5, in a number of cases we calculated the dimension and form the bases of
these spaces.

In this paper we form the basis of the space of spherical polynomials of order ν with
respect to Q(X) of r variables and obtained the upper bounds for the dimension of the
space T (ν,Q) for some diagonal quadratic forms of any number of variables.

2 On the basis of the space P (ν,Q) and T (ν,Q). Let

P (X) = P (x1, x2, x3, · · · xr) =
ν∑

k=0

k∑
i=0

i∑
j=0

· · ·
m∑
l=0

akij···lx
ν−k
1 xk−i

2 xi−j
3 · · · xl

r

be a spherical polynomial of order ν with respect to the positive quadratic formQ(x1, x2, · · · , xr)
of r variables and

L = [a000···0, a100···0, a110···0, a111···0, . . . , aννν···ν ]
T

be the column vector, where akij···l (ν ≥ k ≥ i ≥ j ≥ · · · ≥ l ≥ 0) are the coefficients of
polynomial P (X).

Conditions (1) in matrix notation have the following form S ·L = 0, where the matrix
S (the elements of this matrix are defined from conditions (1)) has the form∥∥∥∥∥∥∥∥∥∥∥

A11(ν−1)ν 2A12(ν−1) 2A13(ν−1) 2A14(ν−1) 2A15(ν−1) ... 0

0 A11(ν−1)ν ... ... ... ... 0

0 0 A11(ν−1)ν ... ... ... 0

0 0 0 A11(ν−1)ν ... ... 0

... ... ... ... ... ... ...

0 0 0 0 ... ... Arr(ν−1)ν

∥∥∥∥∥∥∥∥∥∥∥
.

The number of rows of the matrix S is equal to

ν−1∑
k=1

k−1∑
i=0

i∑
j=0

· · ·
s∑

m=0

m∑
l=0

1 =
ν−1∑
k=1

k−1∑
i=0

i∑
j=0

· · ·
s∑

m=0

(m+ 1) =

(
ν + r − 3

r − 1

)
and the number of columns of the matrix S is equal to

ν∑
k=0

k∑
i=0

i∑
j=0

· · ·
s∑

m=0

m∑
l=0

1 =

(
ν + r − 1

r − 1

)
.

Hence S is
(
ν+r−3
r−1

)
×

(
ν+r−1
r−1

)
matrix.

We partition the matrix S into two matrices S1 and S2. S1 is the left square nonde-
generate

(
ν+r−3
r−1

)
×

(
ν+r−3
r−1

)
matrix, it consists of the first

(
ν+r−3
r−1

)
columns of the matrix

S; matrix S2 consists of the last
(
ν+r−1
r−1

)
−
(
ν+r−3
r−1

)
columns of the matrix S.



96 K. Shavgulidze

Similarly, we partition the matrix L into two matrices L1 and L2. L1 is the
(
ν+r−3
r−1

)
×1

matrix, it consists of the upper
(
ν+r−3
r−1

)
elements of the matrix L; L2 consists of the lower(

ν+r−1
r−1

)
−

(
ν+r−3
r−1

)
elements of the matrix L.

According to the new notation, the matrix equality has the form S1L1 + S2L2 = 0,
i.e., L1 = −S−1

1 S2L2.
It follows from this equality that the matrix L1 is expressed through the matrix L2,

i.e., the first
(
ν+r−3
r−1

)
elements of the matrix L are expressed through its other elements.

Since the matrix L consists of the coefficients of the spherical polynomial P (X), its first(
ν+r−3
r−1

)
coefficients can be expressed through the last

(
ν+r−1
r−1

)
−

(
ν+r−3
r−1

)
coefficients.

Let Q(X) = Q(x1, x2, x3, x4, . . . , xr) be a quadratic form of r variables. We have,
dimP(ν,Q) =

(
ν+r−1
r−1

)
−
(
ν+r−3
r−1

)
and we have proved the following

Theorem 1. The polynomials (the coefficients of polynomial Pabc...d are given in the
brackets, where abc . . . d are the indices of the coefficient equaled to one from aν−1,00...0

to aν,ν,ν,...,ν)

Pν−1,00...0(a
(1)
000...0, a

(1)
100...0, . . . , a

(1)
ν−2,ν−2,ν−2,...,ν−2, 1, 0, 0, . . . , 0),

Pν−1,10...0(a
(2)
000...0, a

(2)
100...0, . . . , a

(2)
ν−2,ν−2,ν−2,ν−2, 0, 1, 0, . . . , 0),

. . . . . . . . . . . . . . . . . .

Pν,ν,ν...ν(a
(t)
000...0, a

(t)
100...0, . . . , a

(t)
ν−2,ν−2,ν−2,...,ν−2, 0, 0, 0, . . . , 1),

where the first
(
ν+r−3
r−1

)
coefficients from a000...0 to aν−2,ν−2,ν−2,...,ν−2 are calculated through

other
(
ν+r−1
r−1

)
−
(
ν+r−3
r−1

)
coefficients, form the basis of the space P(ν,Q).

Consider the generalized r-fold theta-series

ϑ(τ, P,Q) =
∑
n∈Zr

P (n)zQ(n), z = e2πiτ .

Our goal is to construct a basis of the space of generalized theta-series with spherical
polynomial P of order ν for diagonal quadratic form Q of r variables.

Construct the integral automorphisms U of the diagonal quadratic form

Q(X) = b11x
2
1 + b22x

2
2 + b33x

2
3 + · · ·+ brrx

2
r.

An integral r × r matrix U is called an integral automorphism of the quadratic form
Q(X) in r variables if the condition UTAU = A is satisfied.

The integral automorphisms of the quadratic form Q(X) are

U =

∥∥∥∥∥∥∥∥∥∥
e1 0 0 . . . 0
0 e2 0 . . . 0
0 0 e3 . . . 0
. . . . . . .
0 0 0 . . . er

∥∥∥∥∥∥∥∥∥∥
, where ei = ±1.
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It is known ([1], p. 37) that, if G is the set of all integral automorphisms of Q and

t∑
i=1

P (UiX) = 0 for some U1, . . . , Ut ∈ G, then ϑ(τ, P,Q) = 0.

Consider all possible sums
∑t

i=1 P (UiX) = 0. For such polynomials ϑ(τ, P,Q) = 0.
If among the last

(
ν+r−1
r−1

)
−

(
ν+r−3
r−1

)
coefficients of P , at least one of indices k, i, j, . . . l of

the coefficient, equaled to one, is odd, then spherical polynomials P = Pkij...l satisfies the
equality ϑ(τ, P,Q) = 0. Hence the maximal number of linearly independent theta-series
(when the indices k, i, j, . . . l of the corresponding spherical polynomial P is even) is

ν∑
i = 0
2|i

i∑
j = 0
2|j

· · ·
s∑

m = 0
2|m

m∑
l = 0
2|l

1 =
ν∑

i = 0
2|i

i∑
j = 0
2|j

· · ·
s∑

m = 0
2|m

(
m

2
+1) =

(
ν
2
+ r − 2

r − 2

)
,

here k = ν is even. Thus, we have proved the following

Theorem 2. The maximal number of linearly independent theta-series with the spherical
polynomial P of order ν for the diagonal quadratic form Q of r variables is

( ν
2
+r−2
r−2

)
and the basis of the space T (ν,Q) is among the theta-series ϑ(τ, P,Q) with the spherical
polynomial P = Pkij...l with even indices k, i, j, . . . l.
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