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SHELL *
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Abstract. I. Vekua obtained the conditions for the existence of the neutral surface of a shell,
when the neutral surface is the middle surface. In this paper the neutral surface is considered
as any equidistant surfaces of the shell.
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The stress-strain relations are given in the form [1, 2]
ot = Mg +2pel, (i,j=1,2,3), (1)

where a]i- and eé- are the mixed components, respectively of stress and strain tensors, 6 is
the cubical dilatation which will be written as

0=0+e5 0 =e, (a=1,2). (2)

)

when j = 3 from (1) we have

of =2pe§, o3 =N+ 2ues =N + (X +2u)es. (3)
From (3) 1 \ X
eg_ﬂa?(?) eg__)\+2/l ' )\+2,UO-3 (4)

By inserting (4) into (2) we obtain

N 5, 21

P . .
NN N+ 2p

Substituting expression (5) into (1) we get

ol =T +Q\ = ()\’9’ + Py 2Ma§> g, + 2pel,
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where

e} a « a a % A i >\
T§ = NOg§ +2ue§, QF = d'osgs, Ty =0, Q5 = o}, (a' =57 2,u)' (6)

The vector T satisfies the condition nT* = 0 and is therefore called the tangential
stress field and the vector Q" will be called the transverse field.
The vectorial equation of equilibrium

L
NG

may be written as

di(y/go") + ®=0, (/g=+a¥, 9=1—2Hz;+ Kx3) (7)

1 .
—[0a(v/9T*) + 0:(1/9Q")] + ®=0. (8)
V9

Let the surface S : 23 = const be the neutral surface of a non-shallow shell. Then

T =0, ie. T =0 (on S), and equation (8)
1
%aa(ﬁw“) + 93(00?) + 9P = 0,
or
[Va(9Q%) + 05(90®) + 0®] ,_ =0, (=h< 2® =13 < h) 9)

where 2h is the thickness of the shell and

1

Q" =0'oiR" + o§mn, V()= Ja

0a(Va ). (10)

(+) ()
Denote the stress forces acting on the face surfaces ST and S~ by P and P. We have

(+) (=)
P =—(0%0p P =00 p (11)

If we approximately represent o by the formula
o’ (xh, 2? 2°) = ao'(xl,a:2) + z? é’(ml, z?). (12)
from (11) we get

3

®H ®H )
0'3(5131,3}2,563)g—l[P—P—F%(P—i—P)} 13
13
Lthtas /@ Oy 228 ()
- - P P) “p ]
3 T
or "
1rh 2x° (=
o’(zt, 2? 2°) = —5[ —1]—1953 (Para + P3n) - % P ], (14)
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) ) )
pe=py_py p=p3_p3.

(+)
Then to define the vector field P we have the equation

{va(a’AgPrﬁ + APn) + B(Pn + Pr,) + <i>} =0 (15)
where
h+c, o N h+c
Aj = ——la5 + c(b§ — 2Hag)], A=——v(c),

1
B =l —2Hh+2(Kh—2H)c+ 3K,

[a§ + c(bf — 2Ha)] P*r” + —d(c) P*n

h

(=) 9 () (16)
h

d = —20(c)®(c) + Vo {0’§

2 )
= [9(c) +2(Ke— H)| P

Since
V,.r? = bgn, and V,n = —bagrﬁ

from (15) we have
0'Vo(AGP) + (Bags — Abas) P + @5 =0, (05 = @rp), (17)
Vao(AP®) + (0'A%Y2 + B)P + &3 = 0, (&3 = ®n). (18)
From the system of equations (17) we have

+) )

P — po_ po — _ o [Va(AgP) + Ci)g} : (19)
where ) R )
% = L [(B = 2AH)a*® + AbF) | Fy = — [cbﬁ + Va(AgP)] , 20)
A =B? -2ABH + A’K.
Inserting expressions (19) into (18) we obtain the equation
o'V [Adaﬂvv(Agp)} — (B + 0" ASWE)P + & = 0. (21)
It is easily seen that equation (21) is of the elliptic type.
(+) (+)
Thus, if the surface 22 = ¢ is neutral, the stress P and P, applied to the face surfaces,

(+) (=)
must satisfy the vector equation (17) and (18). This means that the stresses P and P

cannot be prescribed arbitrarily both at the same time. However there are problems

)
when this does not occur. For example, in aircraft or submarine apparatus the force P
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(+)
acting on the inner surface S~ may be assumed to be prescribed, but the P acting on

the external face surface ST is not, in general, assigned beforehand. The same situation
occurs on dams. One face surface of the dam is free from stresses and the other is under
the hydrodynamic load, a variable which is generally difficult to define exactly at any
moment in time.
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