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Abstract. By using the Kolmogorov’s strong law of large numbers, the consistent estimates

of the equilibrium and of the degree of volatility are constructed in the Ornstein-Uhlenbeck’s

stochastic model.
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1 Introduction. The Ornstein-Uhlenbeck process, xt satisfies the following stochas-
tic differential equation:

dxt = θ(µ− xt)dt+ σdWt, (1)

where θ > 0, µ ∈ R and σ > 0 are parameters and Wt denotes the Wiener process.
The solution of the stochastic differential equation (1) has the following form

xt = x0e
−θt + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs, (2)

where x0 is assumed to be constant.
The parameters in (2) have the following sense:
(i) µ represents the equilibrium or mean value supported by fundamentals (in other

words, the central location);
(ii) σ is the degree of volatility around it caused by shocks;
(iii) θ is the rate by which these shocks dissipate and the variable reverts towards the

mean;
(iv) x0 is the underlying asset price at moment t = 0 ( the underlying asset initial

price );
(v) xt is the underlying asset price at moment t > 0.
There are various scientific papers devoted to estimate of parameter µ, σ and θ(see, for

example [1], [2]). There least-square minimization and maximum likelihood estimation
techniques are used for the estimating parameters σ and µ which work successfully. The
same we can not say concerning the estimating the parameter θ (see, for example, [1]).

The purpose of the present paper is to introduce a new approach which by use of
values (zk)k∈N of corresponding trajectories at a fixed positive moment t, will allows us
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to construct a consistent estimate of parameters σ and µ of the Ornstein-Uhlenbeck’s
stochastic process under an assumption that all another parameters are known.

The rest of the present paper is organized as follows.
In Section 2 we consider some auxiliary notions and facts from the theory of stochastic

differential equations and mathematical statistics.
In Section 3 we present the constructions of consistent estimates for unknown param-

eters σ and µ in the Ornstein-Uhlenbeck’s stochastic model.

2 Some auxiliary facts from the theory of stochastic differential equations
and mathematical statistics. By use of approaches introduced in [3] one can get the
validity of the following Lemmas

Lemma 1. Let’s consider an Ornstein-Uhlenbeck process xt satisfies the following stochas-
tic differential equation:

dxt = θ(µ− xt)dt+ σdWt (3)

where θ > 0, µ and σ > 0 are parameters and Wt denotes the Wiener process. Then the
solution of this stochastic differential equation (3) is given by

xt = x0e
−θt + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs,

where x0 is assumed to be constant.

Lemma 2. Under conditions of Lemma 1, the following equalities
(i) E(xt) = x0e

−θt + µ(1− e−θt);
(ii) cov(xs, xt) =

σ2

2θ

(
e−θ(t−s) − e−θ(t+s)

)
;

(iii) var(xs) =
σ2

2θ

(
1− e−2θs)

)
;

hold true.

Lemma 3. (Kolmogorov’s strong law of large numbers [4]) Let X1, X2, ... be a sequence
of independent identically distributed random variables defined on the probability space
(Ω,F , P ). If these random variables have a finite expectation m (i.e., E(X1) = E(X2) =
... = m < ∞), then the following condition

P ({ω : lim
n→∞

n−1

n∑
k=1

Xk(ω) = m}) = 1

holds.

3 Main results. We begin this section by the following definition.

Definition. A Borel measurable function Tn : Rn → R (n ∈ N) is called a consistent
estimator of a parameter θ (in the sense of almost everywhere convergence) for the family
(µN

θ )θ∈R if the following condition

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim

n→∞
Tn(x1, · · · , xn) = θ}) = 1
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holds true for each θ ∈ R.

By the use of Kolmogorov’s Strong Law of Large numbers the validity of the following
assertion is obtained.

Theorem 1. For t > 0, x0 ∈ R, θ > 0, µ ∈ R and σ > 0, let’s γ(t,x0.θ,µ,σ) be a Gaussian
probability measure in R with the mean mt = x0e

−θt + µ(1 − e−θt) and the variance
σ2
t = σ2

2θ

(
1− e−2θs

)
. Assuming that parameters x0, t, θ and σ are fixed, for µ ∈ R let’s

denote by γµ the measure γ(t,x0.θ,µ,σ). Let us define the estimate T ∗
n : Rn → R by the

following formula

T ∗
n((zk)1≤k≤n) =

(∑n
k=1 zk
n

− x0e
−θt

)
/
(
1− e−θt

)
.

Then we get

γ∞
µ {(zk)k∈N : (zk)k∈N ∈ R∞ & lim

N→∞
Tn((zk)1≤k≤n) = x0} = 1,

provided that Tn is a consistent estimator of the equilibrium µ ∈ R in the sense of almost
everywhere convergence for the family of probability measures (γ∞

µ )µ∈R.

Proof. Let’s consider probability space (Ω,F , P ), where Ω = R∞, F = B(R∞), P = γ∞
µ .

For k ∈ N we consider k-th projection Prk defined on R∞ by

Prk((xi)i∈N) = xk

for (xi)i∈N ∈ R∞.

It is obvious that (Prk)k∈N is a sequence of independent Gaussian random variables
with the mean mt = x0e

−θt + µ(1 − e−θt) and the variance σ2
t = σ2

2θ

(
1− e−2θs

)
. By the

use of Kolmogorov’s Strong Law of Large numbers we get

γ∞
µ {(zk)k∈N ∈ R∞ & lim

n→∞

∑n
k=1 Prk((zk)k∈N)

n
= x0e

−θt + µ(1− e−θt)} = 1,

which implies

γ∞
µ {(zk)k∈N ∈ R∞ & lim

n→∞

(∑n
k=1 zk
n

− x0e
−θt

)
/
(
1− e−θt

)
= µ}

= γ∞
µ {(zk)k∈N ∈ R∞ & lim

n→∞
T ∗
n((zk)1≤k≤n) = µ} = 1.

By the scheme used in the proof of Theorem 1, one can get the validity of the following
theorem.
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Theorem 2. For t > 0, x0 ∈ R, θ > 0, µ ∈ R and σ > 0, let γ(t,x0.θ,µ,σ) be a Gaussian
probability measure in R with the mean mt = x0e

−θt + µ(1 − e−θt) and the variance
σ2
t = σ2

2θ

(
1− e−2θs

)
. Assuming that parameters x0, t, µ and θ are fixed. For σ2 > 0, let’s

denote by γσ2 the measure γ(t,x0,θ,µ,σ). Let us define the estimate T ∗∗∗
n : Rn → R by the

following formula

T ∗∗∗
n ((zk)1≤k≤n) =

2θ
∑n

k=1

(
zk − x0e

−θt − µ(1− e−θt)
)2

n (1− e−2θs)
.

Then we get

γ∞
σ2{(zk)k∈N : (zk)k∈N ∈ R∞ & lim

N→∞
T ∗∗∗
n ((zk)1≤k≤n) = σ2} = 1,

provided that T ∗∗∗
n is a consistent estimator of the square of the degree of volatility σ

around it caused by shocks in the sense of almost everywhere convergence for the family
of probability measures (γ∞

σ2)σ2>0.
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