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Abstract. The paper concerns the investigation of finite difference scheme for nonlinear partial

integro-differential equation which is based on system of Maxwell equations describing the pro-

cess of propagation of the electromagnetic field into a substance. A wider class of nonlinearity

is studied than the one that has been investigated before.
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In the domain [0, 1]× [0,∞) let us consider the following initial-boundary value prob-
lem:

∂U

∂t
=

∂
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 t∫

0
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)2

dτ

 ∂U
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 , (1)

U(0, t) = U(1, t) = 0, (2)

U(x, 0) = U0(x), (3)

where U0 is a given function and a = a(S) is defined for S ∈ [0;∞).
Integro-differential equations of parabolic type arise in the study of various problems

(see, for example, [1], [7], [13], [14], [20] and references therein). One such model is
obtained at mathematical modeling of processes of electromagnetic field penetration in
the substance. It is shown that in quasi-stationary approximation the corresponding
system of Maxwell equations [15] can be rewritten in the following form [6]:

∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH

 , (4)

where H = (H1, H2, H3) is a vector of the magnetic field.
Note that integro-differential models of (4) type are complex and still yield to the

investigation only for special cases (see, for example, [2]-[6], [8]-[13], [16], [17], [19], [21]
and references therein).

⋆This work was supported by Shota Rustaveli National Science Foundation and France Na-
tional Center for Scientific Research (grant # CNRS/SRNSF 2013, 04/26)



48 Z. Kiguradze, M. Kratsashvili

Study of the models of type (4) have begun in [6]. In particular, for the case a(S) =
1+ S the theorems of existence of solution of the first boundary value problem for scalar
and one-dimensional space case and uniqueness for more general cases are proved in that
work. One-dimensional scalar variant for the case a(S) = (1 + S)p, 0 < p ≤ 1 is studied
in [3]. Investigations for multi-dimensional space cases at first was carried out in [4].
Multidimensional space cases are also discussed in [10], [17].

Asymptotic behavior as t → ∞ of solutions of initial-boundary value problems for (4)
type models are studied in [5], [10]-[13] and in a number of other works as well. In those
works main attentions are paid to one-dimensional analogs.

Finite element analogs and Galerkin method algorithm as well as settling of semi-
discrete and finite difference schemes for (4) type one-dimensional integro-differential
models are studied in [8], [12], [18], [21], [22] and in the other works as well (see [13]
and references therein).

If the magnetic field has the form H = (0, 0, U), U = U(x, t), then from (4) we obtain
the integro-differential equation (1) studied in this note.

Our main aim is to study the finite difference scheme of initial-boundary value problem
(1)-(3). Attention is paid to the investigation of wider cases of nonlinearity than already
were studied. In particular, we consider the case when a(S) = (1 + S)p, 0 < p ≤ 1. The
theorem of asymptotic behavior of solution is stated as well.

Using the compactness method, a modified version of the Galerkin method [20], [24]
the unique solvability can be proved.

Let us note that same results are true for the problem with first type homogeneous
conditions on the whole boundary (see, for example, [10], [13] and references therein).

The following theorem of asymptotic stability of solution takes place.

Theorem 1. If a(S) = (1 + S)p, 0 < p ≤ 1 and U0 ∈ H3(0, 1), U0(0) = U0(1) = 0, then
for the solution of problem (1) - (3) the following estimates hold as t → ∞:∣∣∣∣∂U(x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t
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)
,

∣∣∣∣∂U(x, t)

∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
,

uniformly in x on [0, 1].

Now let us consider the finite difference scheme for problem (1) - (3) for the case
a(S) = (1+S)p, 0 < p ≤ 1. On [0, 1]×[0, T ], where T is a positive number, let us introduce
a net with mesh points denoted by (xi, tj) = (ih, jτ), where i = 0, 1, ...,M ; j = 0, 1, ..., N
with h = 1/M , τ = T/N . The initial line is denoted by j = 0. The discrete approximation
at (xi, tj) is designed by uj

i and the exact solution to problem (1) - (3) by U j
i . We will

use the following known notations [23]:

uj
x,i =

uj
i+1 − uj

i

h
, uj
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h
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t,i =
uj+1
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i

τ
.

Introduce the inner product and the norm:

(uj, vj) = h
M−1∑
i=1

uj
iv

j
i , ∥uj∥ = (uj, uj)1/2.
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For problem (1) - (3) let us consider the following finite difference scheme:

uj
t,i −

{(
1 + τ

j+1∑
k=1

(uk
x̄,i)

2

)p

uj+1
x̄,i

}
x

= f j
i ,

i = 1, 2, ...,M − 1; j = 0, 1, ..., N − 1,

(5)

uj
0 = uj

M = 0, j = 0, 1, ..., N, (6)

u0
i = U0,i, i = 0, 1, ...,M. (7)

Multiplying equation (5) scalarly by uj+1
i , it is not difficult to get the inequality

∥un∥2 +
n∑

j=1

∥uj
x̄∥2τ < C, n = 1, 2, ..., N, (8)

where here and below C is a positive constant independent of τ and h.
The a priori estimate (8) guarantee the stability of the scheme (5) - (7). Note, that

the uniqueness of the solution of the scheme (5) - (7) can be also proved.
The main statement of the present paper can be stated as follows.

Theorem 2. If problem (1) - (3) has a sufficiently smooth solution U(x, t), then the
solution uj = (uj

1, u
j
2, . . . , u

j
M), j = 1, 2, . . . , N of the difference scheme (5) - (7) tends to

the solution of continuous problem (1) - (3) U j = (U j
1 , U

j
2 , . . . , U

j
M), j = 1, 2, . . . , N as

τ → 0, h → 0 and the following estimate is true

∥uj − U j∥ ≤ C(τ + h).

One must note that convergence of the semi-discrete scheme for problem (1) - (3) for
0 < p ≤ 1 was proven in [9]. The fully discrete analogs for p = 1 for of this type models
and different kinds of boundary conditions are studied in [8] and in a number of other
works (see, for example, [13] and references therein).

In the present work we have widened the class of nonlinearity considering case a(S) =
(1+S)p, 0 < p ≤ 1 and investigating fully discrete finite difference schemes for that case.
Various Numerical experiments using scheme (5) - (7) are carried out as well.
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