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HOPF BIFURCATION AND ITS COMPUTER SIMULATION FOR
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Abstract. One-dimensional system of nonlinear partial differential equations based on Maxwell’s

model is considered. The initial-boundary value problem with mixed type boundary conditions

is discussed. It is proved that in some cases of nonlinearity there exists critical value ψc of the

boundary data, such that for 0 < ψ < ψc the steady state solution of the studied problem is

linearly stable, while for ψ > ψc is unstable. It is shown that when ψ passes through ψc then the

Hopf type bifurcation may take place. The finite difference scheme is constructed. Numerical

experiments agree with theoretical investigations.
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The present paper deals with a nonlinear model which is obtained after adding of two
terms to the second equation of Maxwell’s known one-dimensional system [1]. This model
is also some generalization of system with two partial differential equations describing
many other processes (see, for instance, [2] - [5] and references therein).

In the cylinder [0, 1]× [0,∞) let’s consider the following problem [1]:
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U(0, t) = 0, V α∂U

∂x
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x=1

= ψ, (2)

U(x, 0) = U0(x), V (x, 0) = V0(x). (3)

Many works are dedicated to the investigation and numerical solution of (1) type
models (see, for example, [6] - [12]). Here t and x are time and space variables respec-
tively, U = U(x, t), V = V (x, t) are unknown functions, U0, V0 are given functions,
a, b, c, α, β, γ, ψ are known positive parameters.

It is easy to check that the unique stationary solution of problem (1) - (3) is:

Us(x) =

(
b

a
ψ2 +

c

a
ψ

) −α
2α+β−γ

ψx, Vs(x) =

(
b

a
ψ2 +

c

a
ψ

) 1
2α+β−γ

.

Introducing a designation W = V α∂U

∂x
, after simple transformations, we get:
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W (x, 0) = V α
0
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, V (x, 0) = V0(x). (6)

The unique stationary solution of problem (4) - (6) is:

Ws(x) = ψ, Vs(x) =
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.

Let W (x, t) = Ws(x) +W1(x)e
λt, V (x, t) = Vs(x) + V1(x)e

λt.
We examine the linear stability of problem (4) - (6) by linearizing (4) about the

stationary solution (Ws, Vs). After some transformations we have:
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It is not difficult to show that problem (7) has nontrivial solutions if and only if

η2 = η2n =

(
n+

1

2

)2

π2, n ∈ Z0.
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For corresponding λ = λn we have:

λ2n − Pn(ψ, α, β, γ, a, b, c)λn + Ln(ψ, α, β, γ, a, b, c) = 0, (8)
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Let’s note that the stationary solution (Ws, Vs) of problem (4) - (6) is linearly stabile
if and only if Re(λn) < 0, for all n and unstable if there is an integer m such that
Re(λm) > 0. From (8) it can be deduced that if 2α+ β − γ > 0, then stationary solution
(Ws, Vs) of problem (4) - (6) is linearly stable if and only if Pn(ψ, α, β, γ, a, b, c) < 0, for
all n, i.e. if and only if
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We examined the stability of the steady state solution which depends on a boundary
condition ψ > 0. For a sufficiently small value of ψ the steady state solution is linearly
stable. But when ψ passes through a critical value ψc, the steady state solution becomes
unstable and the Hopf bifurcation may takes place [13].

In our experiment the test solutions are as follows:

V (x, t) = e−t(sin πx)4 + 2− x,

W (x, t) = V α(x, t)

(
4x3

(
e−t (1− x)2 +

ψ

4

)
− 2x4 (1− x) e−t

)
.

Parameters are chosen as: a = 1, b = 1, c = 0, α = 1, β = 3, γ = 4, ψ = 1.
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Figure 1: The solutions at t = 0.136 and at t = 0.138. The straight line is the stationary solution and
curve represent the numerical solution.
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