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ON A BOUNDARY VALUE PROBLEM FOR THE NONLINEAR NON-SHALLOW
SPHERICAL SHELL *
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Abstract. In this work we consider the geometrically nonlinear and non-shallow spherical shells
for I.N. Vekua N = 1 approximation. Concrete problem using complex variable functions and
the method of the small parameter has been solved.
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In the present paper we consider the system of equilibrium equations of the two-
dimensional geometrically non-linear and non-shallow spherical shells which is obtained
from the three-dimensional problems of the theory of elasticity for isotropic and homoge-
neous shell by the method of 1. Vekua [1, 2].

The displacement vector U (z!, 22, %) are expressed by the following formula [1]

23
U(z', 2%, 2°) = u(z', 2%) + ﬁv(xl, z?).

Here u(z',2?) and v(z',2?) are the vector fields on the middle surface 23 = 0, 2h
is the thickness of the shell, 23 is a thickness coordinate (—h < z® < h), z! and z? are
isometric coordinates on the spherical surface.

Let us construct the solutions of the form [1, 3],
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where u; and v; are the components of the vectors u and v respectively, € = In is a small

parameter, R-the radius of the middle surface of the sphere..
The system of equilibrium equations of the two-dimensional geometrically nonlinear

and non-shallow spherical shells may be written in the following form (approximation
N =1):
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where A\ and p are Lame’s constants, z = o~ +ix*, A = ————,V* = —92, and
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Introducing the well-known differential operators
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X +,Y +,X 3,Y 3 are the components of external force and well-known quantity,
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defined by functions u ;, ..., u ;,v j, ..., v ;.

The complex representation of a general solutions of systems (1) end (2) are written

in the following form
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where ( = & +in, ¢(2),0(2),f(2) and g(z) are any analytic functions of z, x(z,z) and
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w(z, z) are the general solutions of the following Helmholtz’s equations, respectively:
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D is the domain of the plane Oz'2? onto which the midsurface S of the shell is mapped

topologically.

Here we present a general scheme of solution of boundary problem when the domain
D is a circle of radius rg.

The boundary problem (in stresses) have the following form:
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Inside of the domain the analytic functions f(z), g(2), ¢(z) and ¥ (z) will have the
following form:
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Solutions of the Helmholtz equations w(z, z) and x(z, Z) inside of the domain are repre-
sented as follows

+oo |
w(z,z) = goanln(fyr)emo‘, (7)
W(22) = 52 Bul(vr)e, (5)

where [,,(+) are Bessel’s modified functions.
In the boundary conditions (3) and (4) we substitute the corresponding expressions
(5)-(8), and compare the coefficients at identical degrees, we will find all coefficients [4-7].
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