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REPRESENTATION OF THE DIRAC DELTA FUNCTION IN C(R*) IN TERMS OF
THE (1,1,---)-ORDINARY LEBESGUE MEASURE IN R> *

Givi Giorgadze Gogi Pantsulaia

Abstract. A representation of the Dirac delta function in C(R*°) in terms of the (1,1,---)-
ordinary Lebesgue measure in R* is obtained and some its properties are studied in this paper.
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1 Introduction. The Dirac delta function(é-function) was introduced by Paul
Dirac at the end of the 1920s in an effort to create the mathematical tools for the devel-
opment of quantum field theory. Later, in 1947, Laurent Schwartz gave it a more rigorous
mathematical definition as a spatial linear functional on the space of test functions D
(the set of all real-valued infinitely differentiable functions with compact support). Since
the delta function is not really a function in the classical sense, one should not consider
the value of the delta function at x. Hence, the domain of the delta function is D and its
value for f € D is f(0). Khuri (2004) studied some interesting applications of the delta
function in statistics.

The purpose of the present paper is an introduction of a concept of the Dirac delta
function in the class of all continuous functions defined in the infinite-dimensional topo-
logical vector space of all real valued sequences R* equipped with Tychonoff topology.

The paper is organized as follows:

In Section 2 we present some auxiliary notions and facts which come from papers
[1],]2],[3]. In Section 3 we give a representation of the Dirac delta function in C(R*) in
terms of the (1,1, - - )-ordinary Lebesgue measure in R* and consider some properties of
this functional.

2 Some auxiliary notions and facts.

Definition 1. Let (3;)jen € [0, +00]". We say that a number 8 € [0, +00] is an ordinary
product of numbers (5;)jen if f = lim, o0 [, Bi- An ordinary product of numbers

(B;)jen is denoted by (O) [T,en Bi-
Let @ = (ng)ren € (N '\ {0})". We set

F(] = [O,Tlo]ﬂN, F1 = [no—l—l,ng—l—nl]ﬂN, R ,Fk = [ng+ : '—|—nk71+1,n0—|—" —i—nk]ﬂN, .
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Definition 2. We say that a number 8 € [0,400] is an ordinary a-product of numbers
(Bi)ien if B is an ordinary product of numbers ([ [;cx, Bi)ken. An ordinary a-product of
numbers (53;)ien is denoted by (O, a) [[;cn Bi-

Definition 3. Let a = (ng)ren € (N \ {0}). Let («)OR be the class of all infinite-
dimensional measurable a-rectangles R = [[..y Ri(R; € B(R")) for which an ordinary
product of numbers (m™ (R;));cn exists and is finite. We say that a measure A being the
completion of a translation-invariant Borel measure is an a-ordinary Lebesgue measure in

R*(or, shortly, O(or)LM) if for every R € (a)OR we have A(R) = (O) [[,cn m™ (Ry).
Lemma 1. ([1], Theorem 1. p. 217) For every a = (n;)ien € (N \ {0}V, there exists a
Borel measure fi, in R> which is O(a) LM.

Let A be an (1,1, -+ )-ordinary Lebesgue measure in R>.

Definition 4. An increasing sequence (Y, ),en of finite subsets of the infinite-dimensional
rectangle ], cylax, bx] € R is said to be uniformly distributed in the ], y[ax, bk if for
every elementary rectangle U in the [], .y [ax, bi[ we have

i TN U) AU)

im = :

n—ro0 #(Yn) /\(erN[akv b D
Lemma 2. ([3], Theorem 3.2, p.331) Let f be a continuous function on [, ylak, bx] with
respect to Tikhonov metric p. Then the f is Riemann-integrable on [[, .y lax, bi].

Let us denote by C(][,cylar,bk]) a class of all continuous (with respect to Tikhonov
topology) real-valued functions on ], [ak, bi].

Lemma 3. (/3/, Theorem 3.4, p.336) For [[.cylai,bi] € R, let (Y,)nen be an increasing
family of its finite subsets. Then (Yy,)nen is uniformly distributed in the [[,.ylax, br] if
and only if for every f € C([[,cnlar, b)) the following equality

" Yy f@) B ey T(@)AA@)
e #(Yn) N A(HieN[aiabi])

holds.

Lemma 4. ([2/, Theorem 3, p.9 ) Let o = (n;)ien be the sequence of non-zero natural
numbers and po is O(a)LM. Further, let T™ : R" — R™ i > 1, be a family of linear
transformations with Jacobians A; # 0 and 0 < [[;2; A; < co. Let TN : RN — RN be
the map defined by

TN(ZE) = (T™(x1,. -, Tny), T (Tpyt1s -+ Tgbng )y - -+ )

where ¥ = (z;);en € RY. Then for each E € B( RY), we have

TV (B)) = (ﬁAi)uaw).

Lemma 5. (Intermediate value theorem) Let f be a continuous function on [ [, . ylak, bk).

Suppose that max{f(x) : x € [[,cylar, be]} = M and min{f(z) : x € [],cylar, bi]} = m.
Let u € [m, M]. Then there is ¢ € [],cnlax, bx] such that f(c) = u.
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3 Concept of the Dirac delta function in C(R*) and main results. Let
A be any Borel measure p, in R*. For e > 0, we set ay(e) = e_i/2 and A, =
[12;[—ax(e), ar(e)]. One can easily check that the equality lim._,o; diam(A.) = 0 holds
true.

By using Lemma 9 from Section 2, one can get the validity of the following assertion.

Theorem 1. Let f be a continuous function on R*°. Then the following formula

1
lin A /A S @0@ =1

holds true, where A(y) = A +y for ally € R™.

We have A\(A,) = Hk 1(2%( )) = e k=t 2/1%.

We set 7, (z) = e>r=1 # if z € A, and ne(x) = 0, otherwise. n.(z) is called a nascent
delta function. The Dirac delta function §(z), formally is defined by 6(x) = lim._, o n.(x),
which, of course, has no any reasonable sense.

Let f be a continuous real-valued function on R*. We define a Dirac delta integral
as follows

) [ s f@ane = tim [ a@f@ae).
We define a Dirac delta functional § : C(R*) — R by o(f 0) [ 0 x)d\(x).
The following assertion is a direct consequence of Theorem 1.

Theorem 2. The Dirac delta functional 6 is a linear functional such that 6(f) = f(0)
for each f € C(R™), where O denotes the zero of R*.

By using Theorem 1 and auxiliary facts from Section 2, we get the validity of the
following propositions.

Theorem 3. For a non-zero scalar «, the infinite dimensional Dirac delta function sat-
isfies the following scaling property

(0) /Oo d(ax)d\(x) = |a]™.

Theorem 4. The infinite dimensional Dirac delta function is an even distribution, in the
sense that

©) [ s-a)f@ra) = ©) [ s@)ria)dra)

[eS]

for f € C(R>), which is homogeneous of degree —1.
Theorem 5. ( sifting property ) The following equality

) [ b D) f()axa) = £(7)

holds for f € C(R>).
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Theorem 6. For e > 0, let (Y,(€))nen be an increasing family of finite subsets of A,
which is uniformly distributed in the A.. Let f € C(R*>). Then the following formula

lim lim —Zyey"(g) 1)

€0+ n—oo #(Yn(ﬁ)) - f(O)

holds true.

Corollary. For € > 0, let (Y,,(¢)),en be an increasing family of finite subsets of A, which
is uniformly distributed in the A.. Let § be Dirac delta functional defined in C(R>).
Then the following equality 6(f) = lime_o limyo0 X -y, (o) f(¥)/#(Yn(€) holds true for
each f € C(R™).
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