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PROOF CONSTRUCTION IN UNRANKED LOGIC ?

Gela Chankvetadze Lia Kurtanidze Mikheil Rukhaia

Abstract. In the paper we study proof construction methods for first-order unranked logic.

Unranked languages have unranked alphabet, meaning that function and predicate symbols do

not have a fixed arity. Such languages can model XML documents and operations over them,

thus becoming more important in semantic web. We present a version of sequent calculus for

first-order unranked logic and describe a proof construction algorithm under this calculus. We

give implementation details of the algorithm. We believe that this work will be useful for the

undergoing work on semantic web logic layer.
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1 Introduction. The original conceptualization of the semantic web [2] is to make
information sources available via web-like publishing mechanisms to allow computer agents
(programs) to consume them in order to satisfy some high-level user goal in an autonomous
fashion. In this case, the agents need to know that the information they get is reliable,
accurate and trustworthy. The semantic web stack postulates that a necessary step to
achieve that is to have a logic, or collection of logics, that the agent can use to reason
about the knowledge it has acquired. Such logics are the Knowledge Interchange Format
(KIF) [4] and Common Logic (CL) [3], which are based on unranked alphabet and using
notion of sequence variables.

Unranked languages are based on unranked alphabet, where function and/or predicate
symbols do not have a fixed arity. Thus, in these languages, inside a term or a formula,
it is possible to have several different occurrences of the same function/predicate symbol
with different numbers of arguments. Additional strength to these languages are given
by notion of sequence variables and sequence functions. Sequence variables can be in-
stantiated with finite sequences of terms, whereas sequence functions are interpreted as
multi-valued functions. These constructs seem to be higher-order, but they have precise
first-order semantics defined (see e.g. [3, 4, 5]).

In this paper we present a calculus LKU, an adapted version of the one described in [5],
which is better suitable for automated proof search (we consider less logical operators in
our calculus, in particular, omit rules for implication and equality). We have implemented
a proof construction algorithm on Transact SQL language. The purpose, why we choose
the SQL language is explained later in Section 3.

?This work was supported by the project No.: FR/51/4-102/13 of the Shota Rustaveli Na-
tional Science Foundation.
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ax
a, Γ ` ∆, a

Γ ` ∆, A ¬l¬A, Γ ` ∆
A, Γ ` ∆ ¬rΓ ` ∆, ¬A

A, B, Γ ` ∆ ∧lA ∧ B, Γ ` ∆
Γ ` ∆, A Γ ` ∆, B ∧rΓ ` ∆, A ∧ B

A, Γ ` ∆ B, Γ ` ∆ ∨lA ∨ B, Γ ` ∆
Γ ` ∆, A, B ∨rΓ ` ∆, A ∨ B

A(t), ∀xA(x), Γ ` ∆ ∀l∀xA(x), Γ ` ∆
Γ ` ∆, A(u) ∀r

1
Γ ` ∆, ∀xA(x)

A(pt1, . . . , tnq), ∀x̄A(x̄), Γ ` ∆ ∀u
l∀x̄A(x̄), Γ ` ∆

Γ ` ∆, A(v̄) ∀u
r

2
Γ ` ∆, ∀x̄A(x̄)

A(u), Γ ` ∆ ∃l
1

∃xA(x), Γ ` ∆
Γ ` ∆, ∃xA(x), A(t) ∃rΓ ` ∆, ∃xA(x)

A(v̄), Γ ` ∆ ∃u
l

2
∃x̄A(x̄), Γ ` ∆

Γ ` ∆, ∃x̄A(x̄), A(pt1, . . . , tnq) ∃u
rΓ ` ∆, ∃x̄A(x̄)

1 u is an individual variable, called an eigenvariable, not occurring in Γ, ∆, A(x).
2 v̄ is a sequence variable, called a sequence eigenvariable, not occurring in Γ, ∆, A(x̄).

Figure 1: The sequent calculus LKU.

2 Preliminaries. We follow definitions in [5]. Variable and function symbols are
divided into two groups: individual symbols (denoted by small Latin symbols) and se-
quence symbols (denoted by Latin symbols with a bar). Both groups include a fixed and
flexible arity (unranked) function symbols. There is also distinction between fixed and
flexible arity predicate symbols.

The terms are built in a standard inductive way, using individual as well as sequence
variables and function symbols. The only restriction is that the fixed arity function
symbols can be applied only to individual terms.

The atoms are built in a standard way using predicate symbols and terms. The same
restriction applies here as well: the fixed arity predicate symbols can be applied only to
the individual terms. Formulas are built in a standard way from atoms, logical operators
¬,∧,∨ and quantifiers. Quantification is allowed on both, individual as well as sequence
variables.

The implication connective (⇒) is omitted from logical operators, because the seman-
tics of the sequent sign ` is defined as implication, i.e. a sequent A1, . . . , An ` B1, . . . , Bm

is interpreted as A1 ∧ · · · ∧ An ⇒ B1 ∨ · · · ∨ Bm, for any n,m ≥ 0. If both, n = m = 0,
then ` represents ⊥ ⇒ >, i.e. falsum.

The sequent calculus LKU is given in Figure 1, where Γ,∆ represent multisets of
formulas. An LKU-proof of a sequent S is a sequence of inference rules, starting from
axioms (ax rule) and ending in S.

3 Implementation. The tool1 is a multi-layer application, implemented into two
disjoint parts. A proof construction algorithm (described below) is implemented in Trans-
act SQL language. We choose SQL for several reasons: to the best of our knowledge, no
one else ever tried to implement such a procedure using the SQL language. However,
there is no strong reason not to do so. The Transact SQL language is Turing complete,
meaning that it has the same power as other programming languages. The SQL engine

1The tool is available at http://www.logic.at/staff/mrukhaia/unranked.zip
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itself is quite fast when it needs to treat a big amount of objects (frequently happening
in theorem proving).

Another reason is that, in the future we plan to use our tool to analyze data stored
in relational databases. We believe that having such a procedure already available inside
the database will give us better performance. Finally, SQL is platform independent in
the sense that any type of interface (desktop, web, etc.) can be attached to it.

The second part of the tool is Graphical User Interface (GUI), implemented in Visual
Prolog. The GUI is connected to the database, passes the sequent to be proved to it and
displays the proof information from it (such as the sequence of rules applied, the unifiers
used, axioms reached, etc.). The GUI has basic functionality, but it can be improved in
the future.

To input sequents in the GUI (and in SQL procedure as well) we use standard syntax of
LATEX for the logical operators, i.e. \neg, \land, \lor, \forall, \exists and \seq

for the sequent sign. To write down formulas we have the following rule (dictated by the
way SQL treats strings): do not use parenthesis before operators, but use one after them.
This restriction is not essential and will be removed in the future.

Example. The sequent ∀x(¬P (x) ∨ Q(x)) ` ∀x∃y(¬P (x) ∨ Q(y)) is represented in our
syntax as

\forall(x,\neg(P(x))\lor(Q(x)))

\seq(\forall(x,\exists(y,\neg(P(x))\lor(Q(y)))))

When an input sequent is passed to SQL, there are three different procedures: CHECK,
APPLY, and AXIOMS running consecutively. First, the CHECK procedure checks the syntax
of the input, resets all the tables, reads out the structure of the input sequent and stores
it into a table.

Then, the APPLY procedure decomposes formulas occurring in the sequent according
to inference rules of the LKU calculus, until axioms are reached. The sequence of applied
rules are stored in another table. Note that all propositional rules in LKU are invertible,
thus they can be applied freely. The priority is given to unary inference rules, since the
binary rules duplicate the context. Therefore, unary rules are applied when applicable
and the application of binary rules is postponed as far as possible.

To handle quantifiers, we use the similar method described in [1]. This means that
the choice for the weak quantifier2 instance term is postponed until it is obtained via
unification. It works in the following way: on a decomposition step of a weakly quantified
formula 3, we keep its original version as well (to avoid backtracking) and replace the
quantified variable with an eigenvariable, until the proper term is obtained via unification.
The substitution is applied to the whole proof skeleton, to replace every occurrence of the
eigenvariable with the proper term.

2∀ on the left-hand side of the sequent and ∃ on the right-hand side of the sequent are considered as
weak quantifiers.

3A formula, having a weak quantifier as an outermost connective.
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Unranked unification problem, even in its simplest form, involving sequence variables,
can have infinitely many unifiers. Thus it is non-terminating in general. In our tool
we have implemented terminating fragment of unranked unification, similar to the one
described in [6].

Finally, the AXIOMS procedure checks that axioms are correct (using unification) and
completes the proof (by applying proper substitutions).

4 Conclusions. We presented a method to construct proofs in unranked logics and
its implementation. For the future we plan to investigate unranked unification problem
and improve unranked unification algorithm to cover broader class of proofs inside our
tool.
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