Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 30, 2016

ON ONE BOUNDARY VALUE PROBLEM OF THE GENERALIZED ANALYTIC VECTORS *

Giorgi Akhalaia Nino Manjavidze

Abstract. The Dirichlet-type problem for one quasi-linear elliptic system is investigated.

Keywords and phrases: Generalized Beltrami system, Dirichlet-type problem.

AMS subject classification (2010): 30G20.

In the work of Bojarski [1] it was shown that the methods of generalized analytic functions [2] admit further generalization to the case of the first order elliptic systems the complex form of which is the following

$$\partial_{\bar{z}}w - Q(z)\partial_z w + Aw + B\bar{w} = 0, \tag{1}$$

where $\partial_z \equiv \frac{1}{2}(\partial_x - i\partial y), Q(z), A(z), B(z)$ are given square matrices of order n, Q(z) has special quasi-diagonal form.

Hile [3] noted that what appears to be the essential property of the elliptic systems on the plane for which one can obtain a useful extension of the analytic function theory is the self-commuting property of the variable matrix Q

$$Q(z_1)Q(z_2) = Q(z_2)Q(z_1)$$
(2)

for any two points z_1, z_2 of the complex plane C.

Following Hile if A = B = 0 and Q is self-commuting in C and if Q(z) has eigenvalues less than 1 then the system (1) is called the generalized Beltrami system. The solution of such system is called Q-holomorphic vector. Under the solution in some domain D we mean the so-called regular solution - $w(z) \in L_2(D)$ whose generalized derivatives $w_{\overline{z}}, w_z$ belong to $L_r(D'), r > 2$ where $D' \subset D$ is an arbitrary closed subset and this system is to be satisfied almost everywhere in D.

The matrix valued function $\Phi(z)$ is a generating solution of the generalized Beltrami system if it satisfies the following properties ([3]):

(i) $\Phi(z)$ is a C¹-solution of the generalized Beltrami system in C;

(ii) $\Phi(z)$ is self-commuting and commutes with Q in C;

(iii) $\Phi(t) - \Phi(z)$ is invertible for all z, t in $C, z \neq t$;

(iv) $\partial_z \Phi(z)$ is invertible for all z in C.

*The work of the first author was supported by Georgian Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14)

We will call the matrix $V(t, z) = \partial_z \Phi(t) [\Phi(t) - \Phi(z)]^{-1}$ the generalized Cauchy kernel for the system (1).

Introduce some classes of Q-holomorphic vectors. Let be D a bounded domain with a sufficiently smooth boundary. We say, that the Q-holomorphic vector $\Phi(z)$ belongs to the class $E_p(D,Q)$, p > 1 if the vector $\Phi(z)$ is representable by the generalized Cauchy-Lebesgue type integral

$$\Phi(z) = \frac{1}{2\pi i} \int_{\Gamma} V(t, z) d_Q t \varphi(t)$$
(3)

in the domain D, where $\varphi(t) \in L(\Gamma), d_Q t = I dt + Q d\bar{t}, I$ is an identity matrix.

We need the following result in the sequel.

Theorem 1. Let $\Phi(z) \in L_p(\Gamma)$, p > 1. Then the generalized Cauchy-Lebesgue integral (3) belongs to the class $L_s(\overline{D})$, s = 2p. Moreover, the following inequality

$$\|\Phi\|_{L^n_s(\bar{D})} \le M(p, D) \|\varphi\|_{L^n_p} \tag{4}$$

holds. (The notation $A \in K$, where A is a matrix and K is some class of the functions, means that every element $A_{\alpha\beta}$ of A belongs to K. If K is some linear normed space with the norm $\|\cdot\|$ then $\|A\|_k = \max_{\alpha\beta} \|A_{\alpha\beta}\|_k$)

Let now Γ be a union of simple closed non-intersecting Liapunov-smooth curves bounding finite or infinite domain D. Consider the boundary value problem for the system (1) the so-called modified Dirichlet problem [4]

$$Re[w(t)] = f(x) + a(t), \quad t \in \Gamma,$$
(5)

$$Im[w(z_0)] = c_0, \ z_0 \in D,$$
 (6)

where f(x) is a given real vector on Γ , c_0 , given real constant vector, z_0 is an arbitrary fixed point of the domain $D, a(t) = (a_0, a_1, \ldots, a_m)$ on Γ is a piecewise constant vector which is not defined beforehand. The vector a(t) is completely defined by the problem itself if one of its values is arbitrarily fixed. We assume that $a_0 = 0$ in what follows.

Every Q-holomorphic vector $\Phi(z)$ of the class $E_p(D,Q)$ admits the following representation

$$\Phi(z) = \frac{1}{\pi i} \int_{\Gamma} V(t, z) d_Q t \mu(t) + ic$$
(7)

where $\mu(t) \in L_p(\Gamma, \rho)$ is a real vector. The vector $\mu(t)$ is defined on Γ_j , $j \ge 1$ identically to within the constant vector, $\mu(t)$ on Γ_0 and the constant vector c are defined by the vector $\Phi(z)$ uniquely.

Using the representation (7) and the analog of the Sokhotsky-Plemelj formula for the integral (7) and the boundary condition (5) we obtain the system of Fredholm type integral equations

$$[(I+M)\mu](t) = f(x) + a(t).$$
(8)

The corresponding homogeneous equation of the equation (8) has nm independent solutions. Therefore the inhomogeneous equation (8) is solvable if and only if the right-hand side of this equation satisfies some nm conditions. For the solution of the problem the constant vectors a_j should be chosen so that these conditions will be fulfilled.

Following Muskhelishvili [4] instead of the equation (8) consider its equivalent equation

$$(K\mu)(t) = f(t_0),$$
 (9)

where

$$(K\mu)(t) = [(I+M)\mu](t) - \int_{\Gamma} K(t,t_0)\mu(t)ds, \ k(t,t_0) = \begin{cases} \rho_j(t)I, & t,t_0 \in \Gamma_j \\ 0, & in \ all \ other \ ceses. \end{cases}$$
(10)

 $\rho_j(t)$ denotes a real continuous function given on Γ_j , (j = 1, ..., m) satisfying the condition

$$\int_{\Gamma_j} \rho_j(t) ds \neq 0. \tag{11}$$

It can be proved that the homogeneous equation (9) has not non-trivial solutions. From here and by virtue of Fredholm theorem it follows that inhomogeneous equation (9) has unique solution $\mu(t)$ which is a solution of the initial equation (8). The vectors a_j are completely defined values, namely $a_j = \int_{\Gamma_j} \mu ds$.

We get that the linear bounded operator K in (9) is an invertible operator in the Banach space L_p^n , p > 1. Therefore

$$\|\mu\|_{L^{n}_{s}(\Gamma)} \leq A(p,\Gamma) \|f\|_{L^{n}_{p}(\Gamma)} \text{ where } A(p,\Gamma) = \|K^{-1}\|_{L^{n}_{p}(\Gamma)}.$$
(12)

Applying the estimation given in Theorem 1 the following estimation

$$\|\Phi\|_{L^n_s(\bar{D})} \le B(p,D) \|f\|_{L^n_p(\Gamma)} + \sum_{i=1}^n |c_{0,i}| (mD)^{\frac{1}{p}}$$
(13)

holds, where Φ is a *Q*-holomorphic vector which is the solution of the boundary problem (5)-(6), mD is the measure of the domain *D*.

Consider now the nonlinear differential system in the domain ${\cal D}$ which has the following complex form

$$\frac{\partial w}{\partial \bar{z}} - Q(z)\frac{\partial w}{\partial z} = F(.,w) \quad where \quad F(.,w) \text{ is a } n \times 1 - matrix.$$
(14)

Investigate the boundary value problem (5)-(6) for the system (14), $f(t) \in L_p(\Gamma)$, p > 1 is a given vector on Γ :

Find the vector $w(z) = (w_1, \ldots, w_n) \in W_p^1(D), \ p > 2$ from the class $E_p(D, Q) + C(\overline{D})$ satisfying (14) almost everywhere on Γ .

With respect to F the following conditions are supposed to be fulfilled

1) F(z, w) is measurable with respect to z for every fixed w;

2) F satisfies the Lipshitz condition (15)

$$|F(z, w_1) - F(z, w_2)| \le L|w_1 - w_2|, \quad L > 0;$$

3) $F(z,0) \in L_S(\overline{D})$, where s = 2p.

From these conditions it follows that $F(z.w) \in L_s(\overline{D})$ for every vector $w \in L_s(\overline{D})$. Using the above obtained results we get the following theorem.

Theorem 2. If the right-hand side F of the system (14) satisfies the conditions (15) then in case of a sufficiently small Lipshitz constant L the boundary value problem (5)-(6) for every given $f(t) \in L_p(\Gamma)$, p > 1 and c_0 has a unique solution of the class $E_p(D,Q)+C(\overline{D})$. The piecewise constant vector a(t) is completely defined by the problem itself if one of its values is arbitrarily fixed.

REFERENCES

- 1. BOJARSKI, B. Theory of generalized analytic vectors. Ann. Polon. Math., 17 (1966), 281-320.
- 2. VEKUA, I. Generalized Analytic Functions. Pergamon, Oxford, 1962.
- HILE, G.N. Function theory for generalized Beltrami system. Contemporary Math., 11 (1982), 101-125.
- 4. MUSKHELISHVILI, N. Singular Integral Equations. Noordhoff, Groningen, Leyden, 1953.

Received 19.05.2016; revised 16.11.2016; accepted 15.12.2016.

Author(s) address(es):

Giorgi Akhalaia I. Vekua Institute of Applied Mathematics I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: giaakha@gmail.com

Nino Manjavidze I. Chavchavadze State University Cholokhashvili str. 3/5, 0179 Tbilisi, Georgia E-mail: nino.manjavidze@iliauni.edu.ge