Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 30, 2016

ON THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER BY BINARY FORMS BELONGING TO GENERA CONSISTING OF TWO CLASSES

Teimuraz Vepkhvadze

Abstract. Using the formulas for the average number of representations of a positive integer we show the existence of binary forms which belong to two-class genera, but for which the number of representations of natural numbers is equal to the average number of representations by the corresponding genus.

Keywords and phrases: Binary form, genera of binary forms, number of representations.

AMS subject classification (2010): 11E20, 11E25.

Let r(n; f) denote the number of representations of a natural number n by a positive integral quadratic form $f = f(x_1, x_2, ..., x_s)$. Finding an exact formula for the function r(n; f) means (i) constructing a singular series $\rho(n; f)$ that corresponds to the quadratic form f, (ii) finding its sum, and (iii) constructing function $X(\tau; f) = \sum_{n=1}^{\infty} \nu(n; f) Q^n$ $(Q = e^{2\pi i \tau})$ which is regular for Im $\tau > 0$, so that the following equality holds

$$r(n; f) = \rho(n; f) + \nu(n; f).$$
(1)

It is known that $\vartheta(\tau; f) = 1 + \sum_{n=1}^{\infty} r(n; f) Q^n$. Therefore if the function

$$E(\tau; f) = 1 + \sum_{n=1}^{\infty} \rho(n; f) Q^n$$

is regular for $\text{Im} \tau > 0$, then the arithmetic equality (1) is evidently equivalent to the functional one

$$\vartheta(\tau; f) = E(\tau; f) + X(\tau; f).$$

Let $F(\tau; f)$ denote the theta-series of the genus containing a primitive integral quadratic form f. Siegel [1] proved that if the number of variables of a quadratic form f (both positive-definite and indefinite) is s > 4, then

$$F(\tau; f) = E(\tau; f), \tag{2}$$

where $E(\tau; f)$ is the Eisenstein series.

Later Ramanathan [2] proved that for any primitive integral quadratic form f with $s \ge 3$ variables (except for zero forms with variables s = 3 and zero forms with variables s = 4 whose discriminant is a perfect square), there is a function $E(\tau, z; f)$ which is

called Eisenstein-Siegel series and which is regular for any fixed τ when $\text{Im} \tau > 0$ and $\text{Re} z > 2 - \frac{s}{2}$, analytically extendable in a neighborhood of z = 0, and that

$$F(\tau; f) = E(\tau, z; f)\Big|_{z=0}.$$
 (3)

For s > 4 the function $E(\tau, z; f)|_{z=0}$ coincides with the function $E(\tau; f)$, and the formula (3) with Siegel's formula (2).

In [3] we proved that the function $E(\tau, z; f)$ is analytically extendable in a neighborhood of z = 0 also in the case where f is any nonzero integral binary quadratic form (both positive-definite and indefinite) and that

$$F(\tau; f) = \frac{1}{2} E(\tau, z; f) \big|_{z=0}.$$
(4)

Moreover, convenient formulas are obtained for calculating the values of the function $\rho(n; f)$ in the case where f is any positive integral form of variables $s \ge 2$ (see [4], [5], [6]).

It follows from (4) that half of "the sum of a generalized singular series" that corresponds to the binary quadratic form is equal to the average number of representations of a natural number by the genus containing this quadratic form.

In particular, if a quadratic form belongs to a one-class genus, then for natural n

$$r(n;f) = \frac{1}{2}\rho(n;f).$$
 (5)

In this paper we show the existence of positive integral binary forms which belong to two-class genera, but for which equality (5) is true for some natural n.

Having calculated the values of $\frac{1}{2}\rho(n; f)$ by the formulas from [5], we obtain the formulae for the number of representations of natural numbers by these forms.

Let $f = ax^2 + bxy + cy^2$ be a positive-definite binary quadratic form of discriminant d, so that $d = b^2 - 4ac$. We denote the number of representations of n by the form f by r(n; a, b, c). The set of forms with discriminant -63 splits into two genera of forms and each genus consists of two classes of forms which are respectively

$$f_1 = 2x^2 + xy + 8y^2$$
, $f_2 = 2x^2 - xy + 8y^2$

and

$$f_3 = x^2 + xy + 16y^2$$
, $f_4 = 4x^2 + xy + 4y^2$.

It is obvious that r(n; 2, 1, 8) = r(n; 2, -1, 8) and $\rho(n; 2, 1, 8) = \rho(n; 2, -1, 8)$. Thus by Siegel's theorem

$$r(n; 2, 1, 8) = r(n; 2, -1, 8) = \frac{1}{2}\rho(n; 2, 1, 8).$$

The function $\rho(n; 2, 1, 8)$ can be calculated by the formulas from [5]. So we have

Theorem 1. Let $n = 2^{\alpha} 3^{\beta} 7^{\gamma} u$, where (u, 42) = 1. Then we have

$$\begin{aligned} r &= (n; 2, 1, 8) = r(n; 2, -1, 8) \\ &= \frac{1}{4} \left(\alpha + 1 \right) \left(1 - \left(\frac{n}{3} \right) \right) \left(1 + \left(\frac{7^{-\gamma}n}{7} \right) \right) \sum_{\nu \mid u} \left(\frac{-7}{\nu} \right) \quad for \quad \beta = 0, \\ &= (\alpha + 1) \left(1 + \left(\frac{7^{-\gamma}n}{7} \right) \right) \sum_{\nu \mid u} \left(\frac{-7}{\nu} \right) \quad for \quad 2 \mid \beta, \ \beta > 0, \\ &= 0 \quad for \quad 2 \dagger \beta. \end{aligned}$$

Here $\left(\frac{7-\gamma_n}{7}\right)$, $\left(\frac{-7}{\nu}\right)$ are Legendre-Jacobi symbols.

Let $2 \dagger m$

$$x^2 + xy + 16\,y^2 = 2\,m.$$

Then $2 \ddagger x$, $2 \ddagger y$ or $2 \mid x$, $2 \ddagger y$,

$$4X^2 + XY + 4Y^2 = 2m,$$

where

$$x = 2X + \frac{1}{2}Y, \quad y = -\frac{1}{2}Y; \quad X = \frac{x+y}{2}, \quad Y = -2y$$

or

$$x = 2Y, \quad y = \frac{1}{2}X; \quad X = 2y, \quad Y = \frac{1}{2}x.$$

Thus we have

$$r(2m; 1, 1, 16) = r(2m; 4, 1, 4), \text{ where } 2\dagger m$$

Let

$$4x^2 + xy + 4y^2 = 9n.$$

Then $x \equiv y \pmod{3}$,

$$2X^2 + 3XY + 2Y^2 = n,$$

where

$$x = X + 2Y, \quad y = -2X - Y; \quad X = -\frac{x + 2y}{3}, \quad Y = \frac{2x + y}{3}$$

The binary form $2x^2+3xy+2y^2$ belongs to the one class genus containing the reduced form $x^2 + xy + 2y^2$.

Thus we have

$$r(9n; 1, 1, 16) = r(9n; 4, 1, 4) = r(n; 1, 1, 2) = \frac{1}{2}\rho(n; 1, 1, 2)$$

Having calculated the values of the functions $\rho(2m; 4, 1, 4)$ and $\rho(n; 1, 1, 2)$, we get

Theorem 2. Let $n = 2^{\alpha} 3^{\beta} 7^{\gamma} u$, where (u, 42) = 1. Then we have

$$r = (n; 1, 1, 16) = r(n; 4, 1, 4) = \frac{1}{2} \left(1 - \left(\frac{u}{3}\right) \right) \left(1 + \left(\frac{u}{7}\right) \right) \sum_{\nu \mid u} \left(\frac{\nu}{7}\right)$$

for $\beta = 0, \ \alpha = 1,$
$$= (\alpha + 1) \left(1 + \left(\frac{u}{7}\right) \right) \sum_{\nu \mid u} \left(\frac{\nu}{7}\right) \quad \text{for } 2 \mid \beta$$

$$= 0 \quad \text{for } 2 \nmid \beta.$$

Here $\left(\frac{u}{3}\right)$, $\left(\frac{u}{7}\right)$, $\left(\frac{\nu}{7}\right)$ are Legendre-Jacobi symbols.

Thus we have generalized the formulas of Kaplan and Williams [7].

REFERENCES

- SIEGEL, C.L. Über die analytische Theorie der quadratischen Formen. Ann. of Math., (2) 36, 3 (1935), 527-606.
- 2. RAMANATHAN, K.G. On the analytic theory of quadratic forms. Acta Arith., 21 (1972), 423-436.
- 3. VEPKHVADZE, T.V. On a formula of Siegel (Russian). Acta Arith., 40, 2 (1981-1982), 125-142.
- VEPKHVADZE, T.V. The representation of numbers by positive Gaussian binary quadratic forms (Russian). Trudy Tbiliss. Mat. Inst. Razmadze, 40 (1971), 21-587.
- VEPKHVADZE, T.V. The representation of numbers by positive binary quadratic forms of odd discriminant (Russian). Trudy Tbiliss. Mat. Inst. Razmadze, 45 (1974), 4-40.
- VEPKHVADZE, T. Modular properties of theta-functions and representation of numbers by positive quadratic forms. *Georgian Math. J.*, 4, 4 (1997), 385-400.
- KAPLAN, P., WILLIAMS, K.S. On the number of representations of a positive integer by a binary quadratic form. Acta Arith. 114, 1 (2004), 87-98.

Received 28.05.2016; revised 30.11.2016; accepted 22.12.2016.

Author(s) address(es):

Teimuraz Vepkhvadze I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: t-vepkhvadze@hotmail.com