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FORMULATION OF FICTITIOUS LOAD METHOD IN POLAR COORDINATES
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Abstract. For the solution of boundary value problems and boundary-contact problems of

elasticity in polar coordinates system the boundary element method, namely the fictitious

load method, for domains limited with axes of system polar coordinates is formulated. The

circular boundary is divided on the small size arcs and linear part is divided on the small size

segments.
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1. Introduction. In this paper for the solution of a boundary value problem
and boundary-contact problems of elasticity in polar coordinates system the boundary
element method, namely the fictitious load method, for domain limited with axes of
system polar coordinates is formulated. The circular boundary there is divided not into
the small size segment (as it is used in articles by various authors [1-5]), but on the
small size of arcs, and linear part is divided on the small size segments. In this case the
considered domain is described more precisely, than in the case when the boundary do-
main is divided on small segments, and, as a result, the decision turns out more exact.
The numerical decision is built on the basis of the analytical decisions received be-
forehand for simple singular problems that satisfies approximately the given boundary
conditions on each elements of a contour. The singular (fundamental) solution follows

from reviewing the problem about action of the concentrated force
−→
F = (Fx, Fy) in a

point of the infinite elastic medium which is known as Calvin’s problem.

2. Fundamental solution in polar coordinates system. Solution of Calvin’s
problem, that is given in [2] in Cartesian coordinates x, y (−∞ < x < ∞,−∞ <
y < ∞), in polar coordinates r, ϑ (0 ≤ r < ∞, 0 ≤ ϑ < 2π) will be expressed by the
following function: g1 (r, ϑ) = − 1

4π(1−ν)
ln r. Displacements, for example, will be written

as
ũx (r, ϑ) =

Fx

2G
[(3− 4ν) g1 − r cosϑg1,x] +

Fy

2G
(−r sinϑg1,x) ,

ũy (r, ϑ) =
Fx

2G
(−r cosϑg1,y) +

Fy

2G
[(3− 4ν) g1 − r sinϑg1,y] ,

(1)

and stresses will be written as

σ̃xx (r, ϑ) = Fx [2 (1− ν) g1,x − r cos g1,xx] + Fy (2νg1,y − r sinϑg1,xx) ,

σ̃yy (r, ϑ) = Fx (2νg1,x − r cosϑg1,yy) + Fy [2 (1− ν) g1,y − r sinϑg1,yy] ,

σ̃xy (r, ϑ) = Fx [(1− 2ν) g1,y − r cosϑg1,xx] + Fy [(1− 2ν) g1,x − r sinϑg1,xy] ,

(2)
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where G = E
2(1+ν)

is shear modulus, ν is Poisson’s ratio, E is Young’s modulus; g1,x =

− 1
4π(1−ν)

cosϑ
r

, g1,y = − 1
4π(1−ν)

sinϑ
r
, g1,xx = 1

4π(1−ν)
cos(2ϑ)

r2
, g1,yy = − 1

4π(1−ν)
cos(2ϑ)

r2
, g1,xy =

1
4π(1−ν)

cos(2ϑ)
r2

.
Using the superposition principle, we can solve problems for the infinite elastic

body, which is valid in arbitrary points of the system of the concentrated forces. The
continuous distribution of such forces along some curve of plane allows to consider
problem in which forces are given on this curve.

3. Continuous distribution of a constant forces along curve and numerical
procedure. We consider the following problem. In an infinite elastic body along the
arc ϑ1 ≤ ϑ ≤ ϑ2 of a circle with a radius r are distributed constant forces tr = Pr and
tϑ = Pϑ. This problem can be solved, integrating fundamental solution.

Omitting the details of the transformation, from (1) the following formula for dis-
placements

ūx = r2

8Gπ(1−ν)
{Pϑ [(3− 4ν) (ϑ1 − ϑ2) ln r + 0.5 (ϑ1 − ϑ2) + 0.5 (sin (2 (ϑ− ϑ1))

+ sin (2 (ϑ− ϑ2)))]− 0.25Pr cos (2 (ϑ− ϑ1))− cos (2 (ϑ− ϑ2))} ,

ūy = − r2

8Gπ(1−ν)
{0.25Pϑ (cos (2 (ϑ− ϑ1))− cos (2 (ϑ− ϑ2))) + Pr [− (3− 4ν)

× (ϑ1 − ϑ2) ln r + 0.5 (ϑ1 − ϑ2) + 0.25 (sin (2 (ϑ− ϑ1))− sin (2 (ϑ− ϑ2)))]} ,

(3)

will be found, and from (2) the following formulas for stresses will be found

σ̄yy = − r
8π(1−ν)

{
Pϑ

[
(4ν − 1) (sin (ϑ− ϑ1)− sin (ϑ− ϑ2))− 1

3
(sin (3 (ϑ− ϑ1))

− sin (3 (ϑ− ϑ2)))]− Pr [(5− 4ν) (cos (ϑ− ϑ1)− cos (ϑ− ϑ2))
−1

3
(cos (3 (ϑ− ϑ1))− cos (3 (ϑ− ϑ2)))

]}
,

σ̄xx = − r
8π(1−ν)

{
Pϑ

[
(5− 2ν) (sin (ϑ− ϑ1)− sin (ϑ− ϑ2)) +

1
3
(sin (3 (ϑ− ϑ1))

− sin (3 (ϑ− ϑ2)))]− Pr [(4ν − 1) (cos (ϑ− ϑ1)− cos (ϑ− ϑ2))
+1

3
(cos (3 (ϑ− ϑ1))− cos (3 (ϑ− ϑ2)))

]}
,

σ̄xy = − r
8π(1−ν)

{
Pϑ

[
(4ν − 3) (cos (ϑ− ϑ1)− cos (ϑ− ϑ2)) +

1
3
(cos (3 (ϑ− ϑ1))

− cos (3 (ϑ− ϑ2)))] + Pr [(5− 4ν) (sin (ϑ− ϑ1)− sin (ϑ− ϑ2))
−1

3
(sin (3 (ϑ− ϑ1))− sin (3 (ϑ− ϑ2)))

]}
.

(4)

The obtained analytical solution is the basis of boundary element method for find-
ing the numerical solution of the boundary value problem elasticity. In a particular
example, we discussed the physical aspects of this method. Consider the boundary
value problem for an infinite body with a cavity (in our case a circular). Consider the
plane deformation. The boundary of the hole, which in our case a circle, denoted by C.
Local coordinates n and s respectively directed perpendicular and tangent to curve C.
Assume that the wall cavity is everywhere exposed to the same normal stress σn = −p
(i.e. compression) and tangential stress σs is zero. We want to find the displacement
and stress in the body caused by the load at the boundary.

For the numerical solution of this problem we proceed as follows. We divide the
boundary C with a small arcs of N amount (elements) adjacent to each other. Because



Formulation of fictitious load method in polar coordinates... 139

these items are small, we can assume that each element along its length is exposed
to normal stress σn = −p, but is free from the action of tangent stress. Boundary
conditions in this case take the form

σi
n = −p, σi

s = 0, (i = 1, . . . N) . (5)

For each boundary element we choose concentrate forces uniformly distributed
throughout its length. For example, for the j-th element we assume a continuous
distribution of tangential P j

s and normal P j
n stresses. Also, for the j-th element we

have fictitious stresses P j
s and P j

n and also real stresses σj
s and σj

n induced by the
stresses applied to all boundary elements.

Using (3) and (4), we can calculate the real stresses σj
s and σj

n at the midpoints of
all elements. Thus we obtain the formulas

σi
s =

N∑
j=1

Aij
ssP

j
s +

N∑
j=1

Aij
snP

j
n, σi

n =
N∑
j=1

Aij
nsP

j
s +

N∑
j=1

Aij
nnP

j
n, i = 1, . . . , N, (6)

where Aij
ss, A

ij
sn, A

ij
ns, A

ij
nn are the boundary coefficients for the influence of stresses for

the problem under consideration. For example, the coefficient Aij
ns gives the real normal

stress at the middle of the i-th arc (σi
n) induced by the constant unit tangential load

(P j
s = 1) applied to the j-th arc.
From (5) and (6) we receive the following system of 2N linear equations with 2N

unknowns (P j
n and P j

s , j = 1, . . . , N)

0 =
N∑
j=1

Aij
ssP

j
s +

N∑
j=1

Aij
snP

j
n, − p =

N∑
j=1

Aij
nsP

j
s +

N∑
j=1

Aij
nnP

j
n, i = 1, . . . , N. (7)

After solving system (7) by any numerical method, we can calculate the displace-
ments and stresses at any point of the body.

4. Boundary coefficient influence. We will write expressions for normal and
tangential displacements and stresses at midpoint i-th element due to the action of
fictitious loads P j

n and P j
s , (j = 1, . . . N), applied to the j-th element. The boundary

coefficients for displacements are determined from the formulas

ui
s = P j

s

{
r̄2

8Gπ(1−ν)
[(3− 4ν) (ϑ1 − ϑ2) ln r̄

+0.5 (ϑ1 − ϑ2) + 0.25 sin
(
2
(
ϑ̄− ϑ1

))
− sin

(
2
(
ϑ̄− ϑ2

))]}
+P j

n

{
−r̄2

32Gπ(1−ν)

[
cos

(
2
(
ϑ̄− ϑ1

))
− cos

(
2
(
ϑ̄− ϑ2

))]}
,

ui
n = P j

s

{
− r̄2

32Gπ(1−ν)

[
cos

(
2
(
ϑ̄− ϑ1

))
− cos

(
2
(
ϑ̄− ϑ2

))]}
+P j

n

{
r̄2

8Gπ(1−ν)
[(3− 4ν) (ϑ1 − ϑ2) ln r̄ − 0.5 (ϑ1 − ϑ2)

−0.25
(
sin

(
2
(
ϑ̄− ϑ1

))
− sin

(
2
(
ϑ̄− ϑ2

)))]}
,

(8)

and for stresses are determined from the formulas
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σi
n = P j

s

{
−r̄

8π(1−ν)

[
(4ν − 1)

(
sin

(
ϑ̄− ϑ1

)
− sin

(
ϑ̄− ϑ2

))
− 1

3

(
sin

(
3
(
ϑ̄− ϑ1

))
− sin

(
3
(
ϑ̄− ϑ2

)))]}
+ P j

n

{
r̄

8π(1−ν)

[
(5− 4ν)

(
cos

(
ϑ̄− ϑ1

)
− cos

(
ϑ̄− ϑ2

))
−1

3

(
cos

(
3
(
ϑ̄− ϑ1

))
− cos

(
3
(
ϑ̄− ϑ2

)))]}
,

σi
s = P j

s

{
−r̄

8π(1−ν)

[
(4ν − 3)

(
cos

(
ϑ̄− ϑ1

)
− cos

(
ϑ̄− ϑ2

))
+ 1

3

(
cos

(
3
(
ϑ̄− ϑ1

))
−cos

(
3
(
ϑ̄− ϑ2

)))]}
+ P j

n

{
−r̄

8π(1−ν)

[
(3− 4ν)

(
sin

(
ϑ̄− ϑ1

)
− sin

(
ϑ̄− ϑ2

))
−1

3

(
sin

(
3
(
ϑ̄− ϑ1

))
− sin

(
3
(
ϑ̄− ϑ2

)))]}
,

σi
t = P j

s

{
−r̄

8π(1−ν)

[
(5− 2ν)

(
sin

(
ϑ̄− ϑ1

)
− sin

(
ϑ̄− ϑ2

))
+ 1

3

(
sin

(
3
(
ϑ̄− ϑ1

))
− sin

(
3
(
ϑ̄− ϑ2

)))]}
+ P j

n

{
r̄

8π(1−ν)

[
(4ν − 1)

(
cos

(
ϑ̄− ϑ1

)
− cos

(
ϑ̄− ϑ2

))
+1

3

(
cos

(
3
(
ϑ̄− ϑ1

))
− cos

(
3
(
ϑ̄− ϑ2

)))]}
,

(9)

where r̄ and ϑ̄ are the coordinates in the local coordinate system with center at midpoint
i-th element. Displacements and stresses in the i-th element in the general case are
functions of the components P j

s and P j
n (j = 1, . . . N) fictitious loads in all N elements.

Thus, according to (8) and (9) we can write

ui
s =

N∑
j=1

Bij
ssP

j
s +

N∑
j=1

Bij
snP

j
n, ui

n =
N∑
j=1

Bij
nsP

j
s +

N∑
j=1

Bij
nnP

j
n,

σi
s =

N∑
j=1

Aij
ssP

j
s +

N∑
j=1

Aij
snP

j
n, σi

n =
N∑
j=1

Aij
nsP

j
s +

N∑
j=1

Aij
nnP

j
n.

The boundary influence coefficients Bij
ss, . . . and Aij

ss, . . . in these equations are given
expression in curly brackets in (8) and (9).

By using the above formulated method numerical results of some problems of elas-
ticity are obtained. Those results are not given in this article and we can’t present
them here.
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