Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 29, 2015

THE CONSISTENT CRITERIA OF HYPOTHESES FOR GAUSSIAN STATIONARY PROCESSES

Zerakidze Z., Eliauri L.

Abstract. In the present paper we prove the necessary and sufficient conditions for the existence of the consistent criteria of hypotheses for Gaussian stationary processes.

Keywords and phrases: Orthogonal, strongly structures, consistent criteria.

AMS subject classification: 62H05, 62H12.

Let (E, S) be a measurable space with a given family on probability measures $\{\mu_i, i \in I\}$. We use definitions from the [1].

Definition 1. The family $\{\mu_i, i \in I\}$ of probability measures $\{\mu_i, i \in I\}$ is called orthogonal (singular) if μ_i and μ_j are orthogonal for each $i \neq j$.

Definition 2. The family $\{\mu_i, i \in I\}$ of probability measures is called strongly separable if there exists a disjoint family of *S*-measurable sets $\{X_i, i \in I\}$ such that the relations are fulfilled: $\mu_i(X_i) = 1, \forall i \in I$.

Let $|\mathbf{H}|$ be the set of hypotheses $\mathbf{B}(|\mathbf{H}|)$ and be σ -algebra of subsets of $|\mathbf{H}|$ which contains all finite subsets of $|\mathbf{H}|$ [2].

Definition 3. The family of probability measures $\{\mu_H, H \in |\mathbf{H}|\}$ is said to admit consistent criteria of hypotheses if there exists at least one measurable map $\delta : (E, S) \rightarrow (|\mathbf{H}|, \mathbf{B}(|\mathbf{H}|))$, such that $\mu_H(x : \delta(x) = H) = 1, \forall H \in |\mathbf{H}|$.

Let $\xi(t)$, $t \in T = [0,T] \subset R$ be a Gaussian stationary process with the same correlation functions and let different mean values H(t), $t \in [0,T]$, μ_H , $H \in |H|$ be corresponding probability measures on S and let $f_H(\lambda)$ be spectral densities of these processes. Let

$$0 < c_1 < f_{H_k}(\lambda) e^{a|\lambda|\gamma} < c_2 < +\infty, \quad \forall k \in N,$$
(1)

where a > 0, $0 < \gamma < 1$.

Theorem 1. The Gaussian stationary statistical structure $\{E, S, \mu_{H_k}, k \in N\}$, $N = \{1, 2, ..., n, ...\}$ admits a consistent criterion δ of Hypotheses if and only if the sequences

$$m_{n}^{+}(t) = \prod_{k=1}^{n} \left(1 + c_{k} \frac{d}{dt} \right) \left(H_{k}(t) - H_{i}(t) \right), \quad \forall k, i \in \mathbb{N}$$
(2)

or

$$m_n^-(t) = \prod_{k=1}^n \left(1 - c_k \frac{d}{dt} \right) \left(H_k(t) - H_i(t) \right), \quad \forall k, i \in \mathbb{N}$$
(3)

diverge in $L^{2}[0,T]$, where $c_{k} = \frac{a \sin \pi \gamma}{\pi \cos \frac{\pi \gamma}{2}} \cdot \frac{1}{2^{k-1}}$.

Necessity. Since the family $\{\mu_{H_k}, k \in N\}$ admits a consistent criterion of Hypotheses, then there exists δ a measurable map of the space (E, S) to $(|\mathbf{H}|, \mathbf{B}(|\mathbf{H}|))$

such that $\mu_{H_i}(x : \delta(x) = H_i) = 1$, $\forall i \in N$. Let $X_i = \{x : \delta(x) = H_i\}$, then if is obvious, that $X_i \bigcap X_j = \emptyset$ for all $i \neq j$ and $\mu_i(X_i) = 1$, $\forall i \in N$. Therefore, the family of probability measures $\{\mu_{H_i}, i \in N\}$ is strongly separable. A strong reparability implies orthogonality. Let us assume, that sequence (2) and sequence (3) converge in $L^2[0,T]$, then measures μ_{H_i} and μ_{H_j} , $\forall i \neq j$ are equivalent. The necessity is proved.

Sufficiency. As either the sequence (2) or the sequence (3) diverges in $L^2[0,T]$, all this implies, that Gaussian measures μ_{H_i} and μ_{H_j} , $\forall i \neq j$ are orthogonal. The statistical structure $\{E, S, \mu_{H_i}, i \in N\}$ is orthogonal so $cardN = \chi_0$, then the statistical structure $\{E, S, \mu_{H_i}, i \in N\}$ is strongly separable. There exist such pair wise disjoint S – measurable sets $X_i, i \in N$ that $\mu_{H_i}(X_i) = 1$, $\forall i \in N$. Let us define δ as such a mapping $(E, S) \rightarrow (|H|, B(|H|))$, that $\delta(H_i) = H_i$, $\forall i \in N$. We have $\{x : \delta(x) = H_i\} = X_i$ and $\mu_{H_i}(x : \delta(x) = H_i) = 1$, $\forall i \in N$. Theorem 1 is proved [3].

Let $f_{H_i}(\gamma)$, $i \in N$ be spectral dentist Gaussian processes. Analogously we can prove the following.

Theorem 2. The Gaussian statistical structure $\{E, S, \mu_{H_i}, i \in N\}$, $N=\{1, 2, ..., n, ...\}$ admits a consistent criterion δ of Hypotheses if and only if or the formula $\int_{-\infty}^{+\infty} \left[\frac{f_{H_i}(\lambda)}{f_{H_K}(\lambda)} - 1 - \ln \frac{f_{H_i}(\lambda)}{f_{H_k}(\lambda)} \right] d\lambda = \infty \text{ or this formula } \int_{-\infty}^{+\infty} \left[\frac{f_{H_k}(\lambda)}{f_{H_i}(\lambda)} - 1 - \ln \frac{f_{H_k}(\lambda)}{f_{H_i}(\lambda)} \right] d\lambda = \infty$ for all $k \neq i$.

Acknowledgement. Research partially is supported by Shota Rustaveli National Scientific Grant FR/308/5-104/12.

REFERENCES

1. Aleksidze L., Mumladze M., Zerakidze Z. The consistent criteria of Hypotheses. *Modern* stochastics: Theory and Applications, 1 (2014), 3-11.

2. Anorina A.A. Equivalency of Gaussian stationary measure (Russian). Fan, Tashkent, 1970, 3-25.

3. Yoshihara K., A criterion for the equivalence of two multi-dimensional stationary Gaussian processes. *Sci. Rep. Yokohama National University Sec.*, **I**, 16 (1970), 33-39.

Received 27.05.2015; revised 11.12.2015; accepted 25.12.2015.

Authors' addresses:

Z. Zerakidze
Gori State Teaching University
53, Chavchavadze St., Gori 1400
Georgia
E-mail: zura.zerakidze@mail.ru

L. Eliauri Gori State Teaching University 53, Chavchavadze St., Gori 1400 Georgia E-mail: lauraeliauri@gmail.com