
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 29, 2015

SOME EXACT SOLUTIONS OF THE NONLINEAR 2D BURGER’S EQUATION
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Abstract. Soliton-like solutions of the 2D nonlinear Burger’s equation are obtained. Revision

of the previously received solutions is carried out.
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1. Introduction. Dynamics of shock waves, i.e. motion of thin layers - fronts separating
regions with different densities and temperatures is described by Burger’s equation. The
thickness of such front of shock waves is finite and isolated in space, that is why they call it
soliton-like structure.

In the given paper we study the soliton-like solutions of the following 2D nonlinear
Burger’s equation [1]

(ut + uux − uxx)x + uyy = 0. (1)

Note that being described by Eq. (1) shock waves are weakly two-dimensional in the sense
that the scale of wave-length variation along the y-axis is much more than along the x-axis.

The aim of the paper is to elucidate the process of obtaining of some exact solutions of
Eq. (1) and the revision of the appropriate solutions had been got in [2].

2. Exact solutions. At the end of the last century straight methods of finding of
soliton-like solutions of nonlinear evolution equations were being activated [2 - 6]. According
to this method [7] we suppose that Eq. (1) has the solution of the following form

u(x, y, t) = A∂xw [z(x, y, t)] +B. (2)

Substitution of Eq. (2) into Eq. (1) yields

w(3)z2yzx + w′′zyyzx + w(3)ztz
2
x +Bw(3)z3x +A (w′′)2 z4x +Aw′w(3)z4x

−w(4)z4x + 2w′′zxzxt + 2w′′zyzxy + w′zxyy + w′′ztzxx + 3Bw′′zxzxx

+5Aw′w′′z2xzxx − 6w(3)z2xzxx +A (w′)2 z2xx − 3w′′z2xx + w′zxxt

+Bw′zxxx +A (w′)2 zxzxxx − 4w′′zxzxxx − w′zxxxx = 0.

(3)

Equating the coefficients at z4x to zero we get the following ordinary differential equation
A (w′w′′)′ − w(4) = 0, having the solution

w(z) = − 2

A
ln z. (4)

Further we suppose that the function z(x, y, t) has the linear with respect to x the following
form

z(x, y, t) = P (y, t) + exp [Q(y, t)x+R(y, t)] , (5)
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where P (y, t), Q(y, t) and R(y, t) are differentiable functions with respect to y and t variables.
Let us substitute Eqs. (2), (4) and (5) into the initial Eq. (1), we get

−e2LQyy + eL
[
BPQ3 − PQ4 −Q2Pt − 2PQQt + xPQ2Qt + PQ2Rt + 2PyQy

−2xQPyQy − 2xPQ2
y + x2PQQ2

y − 2QPyRy − 2PQyRy

+2xPQQyRy + PQR2
y +QPyy − 2PQyy − xPQQyy − PQRyy

]
+
[
−BP 2Q3 + P 2Q4 + PQ2Pt − 2P 2QQt − xP 2Q2Qt − P 2Q2Rt

−2QP 2
y + 2PPyQy + 2xPQPyQy − 2xP 2Q2

y − x2P 2QQ2
y

+2PQPyRy − 2P 2QyRy − 2xP 2QQyRy − P 2QR2
y + PQPyy

−P 2Qyy − xP 2QQyy − P 2QRyy

]
= 0.

(6)

Here L = L(x, y, t) = Q(y, t)x+R(y, t).

If we equalize to zero the coefficients at e2L, x2eL, xeL, eL, x2, x and x2 we get the
following system

Qyy = Qy = Qt = 0,

BPQ2 − PQ3 −QPt + PQRt − 2PyRy + PR2
y + Pyy − PRyy = 0,

BP 2Q2 − P 2Q3 − PQPt + P 2QRt + 2P 2
y − 2PPyRy + P 2R2

y − PPyy + P 2Ryy = 0.

(7)

Thus under the conditions (7) Eq. (1) has the following soliton-like solution

u(x, y, t) = − 2QeL

P + eL
+B = −Q(y, t)

[
1 + tanh

Q(y, t)x+R(y, t)− lnP (y, t)

2

]
+B. (8)

From the first equation of (7) it follows that Q(y, t) = k = const ̸= 0, and for the rest we
get{

k2BP − k3P − kPt + kPRt − 2PyRy + PR2
y + Pyy − PRyy = 0,

k2BP 2 − k3P 2 − kPPt + kP 2Rt + 2P 2
y − 2PPyRy + P 2R2

y − PPyy + P 2Ryy = 0.
(9)

At last according to the given formalism soliton-like solution of the nonlinear Eq. (1) becomes

u(x, y, t) = −k

[
1 + tanh

kx+R(y, t)− lnP (y, t)

2

]
+B. (10)

In this way substituting the solutions of (9) in Eq. (10) we will get new solutions.

For example, let us consider the following cases:

I. Suppose P (y, t) = 1, then the system (9) is{
Ryy +R2

y + kRt +Bk2 − k3 = 0,

Ryy −R2
y − kRt −Bk2 + k3 = 0.

(11)

As it is seen, the compatibility condition for the system (11) is Ryy(y, t) = 0 or the function
R should have the form

R(y, t) = yf1(t) + c1y + f2(t) + c2, (12)
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where f1(t) and f2(t) are arbitrary functions, but c1 and c2 are arbitrary constants. From
system (11) we can define the constant B as

B =
k3 − k [yf ′

1(t) + f ′
2(t)]− [f1(t) + c1]

2

k2
. (13)

To keep B constant it is necessary to have f ′
1(t) = 0 and f ′

2(t) = b. Thus we can define
f1(t) = c3, and f2(t) = bt. Then Eq. (12) becomes

R(y, t) = ay + bt+ c, (a = c1 + c3) . (14)

Thus the solution (10) of Eq. (1) in the case under consideration is

u(x, y, t) = −k tanh

(
kx+ ay + bt+ c

2

)
− b

k
− a2

k2
. (15)

This solution represents the solitary wave and coincides with Eq. (2.13) obtained in [2].
In case when f1(t) = c1 = 0, and f2(t) = k(k − B)t we cannot define B by Eq. (13) and

the solution (10) is

u(x, y, t) = −k

[
1 + tanh

kx+ k(k −B)t+ c

2

]
+B. (16)

This expression represents independent from y-variable solution and coincides with the solu-
tion (2.14) obtained in [2]. As to the solution (2.15) given in [2] is wrong because it doesn’t
satisfy the condition Ryy(y, t) = 0.

II. Suppose P (y, t) = t, then system (9) reduces to{ (
Ryy +R2

y + kRt

)
t+

(
Bk2 − k3

)
t− k = 0,(

Ryy −R2
y − kRt

)
t−

(
Bk2 − k3

)
t+ k = 0.

(17)

The system compatibility condition again is Ryy(y, t) = 0 and the function R(y, t) again has
the form (12). From system (17) we find

B =
k −R2

yt− kRtt+ k3t

k2t
=

k − [f1(t) + c1]
2 t− k [yf ′

1(t) + f ′
2(t)] + k3t

k2t
. (18)

It is seen that to keep B constant the conditions f ′
1(t) = 0 and f ′

2(t) = 1/t should be satisfied.
Thus the appropriate functions can be defined as follows: f1(t) = c3 , and f2(t) = ln t .
Consequently R(y, t) = ay + ln t + c, where a = c3 + c1. Then, according to (18), we can

define the constant B = k − a2

k2
. Thus solution (10) of Eq. (1) is

u(x, y, t) = −a2

k2
− k tanh

(
kx+ ay + c

2

)
, (19)

which represents the stationary solution and generalizes solution (2.17) of [2]. In case when
f1(t) = c1 = 0 and f2(t) = k(k − B)t + ln t it becomes impossible to define B and (10) can
be written as independent of y-variable solution (16).

III. When P (y, t) = y, then system (9) gives{
y2

(
Ryy +R2

y + kRt

)
− 2yRy + y2

(
Bk2 − k3

)
+ 2 = 0,

y
(
Ryy −R2

y − kRt

)
+ 2Ry − y

(
Bk2 − k3

)
= 0.

(20)
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The compatibility condition of this system is
Ryy = − 1

y2
,

Bk2 − k3 = − 1

y2
−R2

y − kRt +
2

y
Ry .

(21)

From the first condition we can define the following general form

R(y, t) = ln y + yf1(t) + c1y + f2(t) + c2, (22)

where f1(t) and f2(t) are arbitrary functions and c1 and c2 are arbitrary constants. From the
second equation of (21) we see that the following conditions Ry = 1/y and Rt = const are
needed to keep the left-hand side of Eq. (21) as constant. Thus the function (22) should have
the form R(y, t) = ln y+at+c , which can be achieved if in Eq. (22) we choose f1(t) = c1 = 0,
and f2(t) = at. In addition, from the second equation of (21) we find a = −Bk + k2. Thus
Eq. (1) has the following solution

u(x, y, t) = −k

[
1 + tanh

kx+ k(k −B)t+ c

2

]
+B, (23)

which coincides with the solution (16).

If we don’t specify the form of a, then from Eq. (21) we find B = k− a

k
, and the solution

of Eq. (1) is

u(x, y, t) = −a

k
− k tanh

kx+ at+ c

2
. (24)

As to the solution (2.19) of [2] it is wrong.
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