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ON ONE NUMERICAL METHOD OF APPROXIMATE SOLUTION OF
BOUNDARY-CONTACT PROBLEM OF SOME DIFFICULT GEOMETRY
MULTISTRUCTURES BODIES

Papukashvili A.

Abstract. In this paper stress-deformed state for some “ridge-form” multistructures having
difficult geometry is studied. Particularly the boundary-contacted problem is considered.
Two rectangle (particularly a square) form plates are connected by a beam. We consider
classic linear boundary problems for plates (biharmonic equation), but for the beam nonlinear
Kirchhoff type integro-differential equation is studied. In the equation of a beam we consider
physical nonlinearity along with mathematical nonlinearity. The program in MATLAB is
created and numerical experiments are made.
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1. Introduction. The stress - deformed condition for some ”bridge - form” multistruc-
tures with difficult geometry (two rectangular plates are connected by the beam, (see Fig.1))
is studied using numerical methods (finite-difference methods). Plate bending is represented
by the biharmonic equation (see, for example [1], [4]). The equation of the beam by Kirchhoff
type nonlinear integro-differential equation (see, for example [2] - [4]) is studied. The function
of a plate bending in central points is found by direct numerical methods and the iterative
method for definition of numerical values of function of a bend of a beam for the approached
decision of nonlinear Kirchhoff type equation is used. In the equation of a beam we consider
physical nonlinearity along with mathematical nonlinearity.
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2. Statement of the problem. It is possible to dismantle the above boundary - contact
problem in three separate tasks:
a) Boundary value problem for the right plate
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b) Boundary value problem for the left plate
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where D = m is cylindrical rigidity, H is thickness of a plate, F is Young’s modulus,
—v

v is Poissons coefficient;
c¢) Boundary value problem for a beam
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—a<z<a,
w3(—a) = a2, ws(a)=aq, (10)
d d
L iog(-a) =0, Luya) =0, (1)

where a1 ~ wi(a,0), as =~ ws(—a,0), mgy, my,my > 0.

3. The algorithm. In order to solve this boundary value problem we use the finite -
difference method. Let’s consider the case when the square is ¢ — a = 2b; On ; and 9
squares let us make a regular square grid with steps h1 = hg = h, ny =ngs =n,
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The part of beam [—a, a] section is divided 2n3 by step hs,
hs =a/ns, x;=—a+tihs, 1=0,1,2,--- 2n3.

Let’s replace differential operators by the finite - difference analogues. Equations (1), (5)
of the fourth order (biharmonic) differential operators are replaced by the difference equations
using 3-point template with error O(h?). In (4), (8) third order differential operators for wy,
the right difference derivative is used for wy - the left difference derivative is used and they
are taken on 4-point template with error O(h). As for the first and second order differential
operators, they are replaced on 2 and 3 point template with O(h?) error. In (9) beam equation
differential operator, is replaced by O(h3) order difference scheme: for 4th order derivative on
5-point template and for 2nd order on 3-point template. In order to solve obtained nonlinear
difference problem we use the iterative method.

Let’s use the following marking for grid functions wy;; ~ wi(x;,y;), wa,; ~ wa(x;, yj),
w3 ~ w3(wi), frij = f1(Ti,y5), f25 = fo(@i,y;), f35 = fa(@i).

In case of (1)-(4) and (5)-(8) problems we will get problem with five - block diagonal
system of equations (see [4]).

In order to solve (9)-(11) nonlinear system of equations we use the difference method
combined with iterative methods:
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Fyon9="hifson2—01; Fyon1=nh3fson1+ (4+7)a1.

wéoz), 1=0,1,---,2n is the initial approach.

Remark. we can take as initial approach
_ _ _ (0) _ o _ .
Wz = 2, W31 = 0, W3 9 = 0, -+, W3 op—1 = 0, W3 o, = 15
For finding in central points of required functions of a deflection the following five - diagonal
system of algebraic equations is obtained which was solved by direct numerical methods.

The system of programs in MATLAB on the basis of the above-stated algorithm is created
which is intended for a wide range of consumers.
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