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Abstract. One-dimensional analog of the two-dimensional system of nonlinear partial differ-

ential equations arising in process of vein formation of young leaves is considered. Parabolic

regularization of this system is studied. Finite difference scheme for initial-boundary value

problem is constructed. Graphical illustrations of the tests experiments are given.
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Two-dimensional model describing the vein formation of young leaves is given and
some qualitative and structural properties of solutions of this model are established
in [1]. In [2] investigations for one-dimensional analog are carried out. In biological
modeling there are many works where this and many models of similar processes are
also presented and discussed (see, for example, [3]-[6] and references therein). Many
scientific works are devoted to investigation and numerical resolution of different kinds
of initial-boundary value problems for model described in [1] and its one-dimensional
and multi-dimensional analogs (see, for example, [7]-[14] and references therein).

Let us consider the following initial-boundary value problem for one-dimensional
analog of the vein formation model [1]:
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where g, U0, V0 are known sufficiently smooth functions, g0 ≤ g (ξ) ≤ G0; T , g0, G0, δ0
are given positive constants.

The purpose of our note is to study the parabolic regularization of problem (1):
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where ε is the given positive constant.

Investigation and numerical solution of nonlinear parabolic type models to which
belongs the investigated problem (2) when ε ̸= 0 are carried out in many works as well
(see, for example, [12], [15] and references therein).

On [0, 1] × [0, T ] let us introduce a net with mesh points denoted by (xi, tj) =
(ih, jτ) , where i = 0, 1, ...,M ; j = 0, 1, ..., N with h = 1/M , τ = T/N. The discrete
approximation at (xi, tj) is designated by uj

i , v
j
i and the exact solution of problem (2)

by U j
i , V

j
i .

Using the usual method of construction of discrete models let us consider the fol-
lowing finite difference scheme:
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M = vx,0 = vx̄,M = 0, j = 0, 1, ..., N, (5)

u0
i = U0,i, v0i = V0,i, i = 0, 1, ..,M. (6)

The following statement takes place.

Theorem. The finite difference scheme (3)-(6) converges to the solution of problem
(2) in the norm of the space Ch with the rate O (τ + h).

Note that, for solving the finite difference scheme (3)-(6) first we solve system
(4) using iterative procedure and well known tridiagonal matrix algorithm and after
we solve system (3) by the same algorithm, using in both cases suitable boundary and
initial conditions from (5), (6). Numerous computer test experiments are made by using
the above-mentioned algorithm and the numerical experiments are quite satisfactory
and fully agree with the considered exact test solutions of problem (2) with suitable
right parts.

Some graphical illustrations of those numerical results are given in Fig.1 and Fig.2.

The graphs in Fig.1 illustrate numerical results of problem (2) for the case ε = 1.

Here, with the suitable right parts, the exact solutions, when g (s) =
1

1 + s2
are:

U (x, t) = 10x (1− x) (1 + t) , V (x, t) = 10x (1− x)
(
1 + t+ t2

)
.
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Fig.1. Exact (solid line) and numerical (marked with ×) solutions and differences
between exact and numerical solutions (marked with +) when ε = 1.

The graphs below (see Fig.2) illustrate numerical results of problem (2) for the case
ε = 0, 001. For the same data as in the previous case, here we took the exact solutions
as:

U (x, t) = 10x (1− x) (1 + t) , V (x, t) = 10x (1− x)
(
1 + t+ t2

)

Fig.2. Exact (solid line) and numerical (marked with ×) solutions and differences
between exact and numerical solutions (marked with +), when ε = 0, 001.
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