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Abstract. In the paper we prove the necessary and sufficient conditions for the existence of

the consistent criteria for statistical structures.
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Let there be given (E, S) measurable space and on this space let there be given
{µi, i ∈ I} family of probability measures which depend on i ∈ I parameter. Let us
recall some definitions [1].

Definition 1. A statistical structure {E, S, µi, i ∈ I} is called orthogonal (singular)
if (∀i) (∀j) (i ∈ I&j ∈ I&i ̸= j ⇒ µi⊥µj).

Definition 2. A statistical structure {E, S, µi, i ∈ I} is said to be strongly sep-
arable, if there exists pairwaise disjoint S-measurable sets {Xi, i ∈ I} such that the
relation (∀i) (i ∈ I ⇒ µi (Xi) = 1) is fulfilled [2].

Definition 3. Any assumption defining the form of distribution selection is called
a Hypotheses.

Let |H| be the set of Hypotheses and let B (|H|) be the σ-algebra of subsets in |H|
which contains all finite subsets of |H| .

Definition 4. A statistical structure {E, S, µH , H ∈ |H|} is said to admit consistent
criteria for checking Hypotheses if there exists at least one measurable map (E, S) →
(|H| ,B (|H|)) such that µH (x : δ (x) = H) = 1, ∀H ∈ |H| .

Definition 5. A statistical structure {E, S, µH , H ∈ |H|} is said to admit a consis-
tent criterion of any parametric function if for any real bounded measurable function
(|H| ,B (|H|)) → (R,B (R)) there exists at least one measurable function f : (E, S) →
(R,B (R)) such that µH (x : f (x) = g (H)) = 1, ∀H ∈ |H| .

Definition 6. A statistical structure {E, S, µH , H ∈ |H|} a said to admit an un-
biased criterion of any parametric function if for any real bounded measurable func-
tion g : (|H| ,B (|H|)) → (R,B (R)) there exists at least one measurable function
l : (E, S) → (R,B (R)) such that

∫
l (x)µH (dx) = g (H) , ∀H ∈ |H| .

Let S1 ⊂ S be some σ-sub algebra of σ-algebra S and let µ be probability measure
defined on S1.

Denote by Sσ
µ (S, S1) the set of all countable additive extensions of µ and by

expσ
µ (S, S1) the set of all extreme points of. It’s known, that exp expσ

µ (S, S1) may
be empty [3].

The following theorem can be easily approved:
Theorem 1. If a statistical structure {E, S, µH , H ∈ |H|} admitting a consistent

criterion for checking Hypotheses, then this statistical structure {E, S, µH , H ∈ |H|}
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admits a consistent criterion for any parametric function and this statistical structure
{E, S, µH , H ∈ |H|} admits an unbiased criterion of any parametric function [4].

Theorem 2. The statistical structure {E, S, µH , H ∈ |H|} admits a consistent cri-
teria of Hypotheses if and only if the statistical structure {E, S, µH , H ∈ |H|} admits
an unbiased criterion of any parametric function and is strongly separable.

Proof. Necessity. As the statistical structure {E, S, µH , H ∈ |H|} admits a con-
sistent criterion of Hypotheses, so the statistical structure {E, S, µH , H ∈ |H|} admits
an unbiased criterion of any parametric function and if is strongly separable (see the-
orem 1).

Sufficient. As the statistical structure {E, S, µH , H ∈ |H|} is strongly separable,
there exists a disjoint family of S-measurable sets {BH , H ∈ |H|} such that µH (BH) =
1, ∀H ∈ |H| . As the statistical structure {E, S, µH , H ∈ |H|} admits an unbiased cri-
terion for any parametric function, so there exists a subspace G ⊂ B (E, S) , containing
lE unit and B (E, S) can be imagined as a topological sum of G and H0 = µ−1 (0) ,
where the functional µ (f) =

∫
E
f (x)µ (dx) , f ∈ B (E, S) , µ ∈ B′ (E, S) and a

statistical structure {E, S, µH , H ∈ |H|} is strongly separable, subspace G is a grid
towards canonical order on G.

We assume that is minimal σ- algebra of sub algebra S, all functions on G are
measurable towards S0. Then G ⊂ B (E, S0) ⊂ B (E, S). Since a subspace G contacts
lE and represents a grid, then G ⊃ B (E, S) and that’s why G = B (E, S).

As family {µH , H ∈ |H|} represents a dense subspace of exS|H| (exS|H| are extreme
points of S|H|), So, Iµ is an ideal in the set S0, which contains zero measured sets for
all µ ∈ {µH , H ∈ |H|} and consists only of an empty set.

Hence, there exist sets {AH , H ∈ |H|} such that µH (AH) = 1 for AH

∩
AH′ = ∅ for

H ̸= H ′and E =
∪

H∈|H|AH is a set S0. It follows from the condition of this theorem

that for every T ∈ B (|H|) in G, there exists function fT , which is a consistent criterion
gT parametric function. If A = {x : fT (x) ̸= 0} , then

∪
H∈|H|AH ⊂ A, A

∩
AH =

∅, ∀H ∈ T and hence
∪

H∈|H|AH = A implying that
∪

H∈|H| AH ⊂ S0.

Then, the mapping δ (x) = H if x ∈ AH , ∀H ∈ |H| is a consistent criterion of
Hypotheses. Theorem 2 is proved.
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