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1. Hamiltonization of dynamical systems. Let us consider the following
system of ordinary differential equations [1]

ẋn = vn(x) + jn(t), 1 ≤ n ≤ N, (1)

Lagrangian,
L = (ẋn − vn(x)− jn(t))ψn (2)

and the corresponding motion equations

ẋn = vn(x) + jn(t), ψ̇n = −∂vm
∂xn

ψm. (3)

System (3) extends system (1) by linear equation for the ψ. The extended system can
be put in the Hamiltonian form [2].

2. Quanputing. The idea of computations on quanputers is in finding the needed
(value of the) state (wave function ψ(t, x)) from the initial, easy constructible, state
(ψ(0, x),) which is superposition of different states, including an interesting one, with
the same weight. During the computation the weight of the interesting state is growing
till the value when we can guess the solution of the problem and then test it, which is
much more easier than to find it [3-5].

Let us consider the following nonlinear evolution equation

iVt = ∆V − 1

2
V 2 + J,

extended Lagrangian and Hamiltonian

L =

∫
dxD(iVt −∆V +

1

2
V 2 − J)ψ, H =

∫
dxD(∆V − 1

2
V 2 + J)ψ

and corresponding Hamiltonian motion equations [6]

iVt = ∆V − 1
2
V 2 + J = {V,H},

iψt = −∆ψ + V ψ = {ψ,H},

{V (t, x), ψ(t, y)} = δD(x− y).



Dynamics and Renormdynamics 77

The solution of the problem is given in the form

|T ) = U(T )|0), ψ(t, x) =< x|t), U(T ) = Texp(−i
∫ T

0

H(t)).

Under the programming of the quanputer we understand construction of the potential
V, or the corresponding Hamiltonian. For the given potential, we calculate correspond-
ing source J.

The discrete version of the system can be put in the form [7]

Sm(n+ 1) = Φn(S(n)) + Jm(n),

Ψm(n− 1) = Amk(S(n))Ψk(n), Amk(S(n)) =
∂Φk(S(n))

∂Sm(n)
,

when the matrix A is regular, we obtain explicit form of the corresponding discrete
dynamics

Sm(n+ 1) = Φn(S(n)) + Jm(n),

Ψm(n) = A−1
mk(S(n+ 1))Ψk(n).

Now the state vector S(n) and wave vector Ψm(n) may correspond not only to the
discrete values of the potential V (n,m) = Sm(n), and wave function ψ(n,m) = Ψm(n)
but also any representation of the computing process from theoretical to experimental
realization on a quanputer, including algorithm of solution, higher level programm
realization of the algorithm [8].

3. Complex polynomial equations and Nambu-poisson dynamics. We
consider the following polynomial equation

PN(z)− tzN+1 = 0, z ∈ C, t ∈ (0,∞).

For small times t all zeros but one of this polynomial are near the zeros of the polynomial
PN(z). The extra zero zN+1 is far from other zeros, for small t,

zN+1 =
aN
t

+ ... .

In regular case main zeros are linear functions of t, for small t.
For large times all n+ 1 zeros are near the zeros of the equation

a0 − tzN+1 = 0, zn = N+1
√
a0/t exp

(
2πi

n

N + 1

)
, n = 0, 1, ..., N.

At a root xc of multiplicity k we have

P
(k)
N (xc)

n!
(x− xc)

k + ... = txN+1
c ,

xn(t) = xc + cn,kt
1/k, cn,k =

(
xN+1
c n!

P
(k)
N (xc)

) 1
k

exp(2πin
k
), 0 ≤ n ≤ k − 1.
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So we can define the multiplicity of the root k from the time dependence of the roots.
It is interesting to know how extra zero approach with time to the other zeros and
then all of them organized as sites of symmetric polygon on the circle with decreasing
radius. Note that coefficients an, 1 ≤ n ≤ N are known functions of zeros but do
not depend on t - are invariants - integrals of motion. Having N integrals of motion
Hn, 1 ≤ n ≤ N we construct Nambu-Poisson dynamics for the roots [9-11]

ẋn = {xn, H1, H2, ..., HN}, 1 ≤ n ≤ N.

As an example we consider quadratic deformation of the linear equation

a0 + a1z − tz2 = −t(z − z1)(z − z2) = 0,

a0 = −tz1z2, a1 = t(z1 + z2).

As a ’time independent’ Hamiltonian we take

H = −a0/a1 =
z1z2
z1 + z2

the motion equations we find from the time independence of a0 and a1

ȧ0 = −z1z2 − t(ż1z2 + z1ż2) = 0,

ȧ1 = z1 + z2 + t(ż1 + ż2) = 0,

ż1 =
z31z2

a0(z1 − z2)
= {z1, H} = f12

∂H

∂z2
,

ż2 =
z32z1

a0(z2 − z1)
= {z2, H} = f21

∂H

∂z1
,

f12 =
z1z2(z1 + z2)

2

a0(z1 − z2)
=

a21
t3(z2 − z1)

.

In the cubic deformation of the quadratic equation

a0 + a1z + a2z
2 − tz3 = −t(z − z1)(z − z2)(z − z3) = 0

we have

a0 = tz1z2z3, a1 = −t(z1z2 + z2z3 + z3z1), a2 = t(z1 + z2 + z3),

ż1 =
z41z2z3

a0(z2 − z1)(z1 − z3)
= {z1, H1, H2} = f1nm

∂H1

∂zn

∂H2

∂zm
,

f123 =
z1z2z3(z1z2 + z2z3 + z3z1)(z1 + z2 + z3)

a0(z2 − z1)(z3 − z2)(z1 − z3)
=

a1a2
t3(z1 − z2)(z1 − z3)(z3 − z2)

,

H1 =
z1z2z3

z1z2 + z2z3 + z3z1
, H2 =

z1z2 + z2z3 + z3z1
z1 + z2 + z3

.
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Introducing new time variable τ = a1a2t
−2/2 we put the equation in the form

dz1
dτ

= {z1, H1, H2} = f1nm
∂H1

∂zn

∂H2

∂zm
,

f123 =
1

(z1 − z2)(z1 − z3)(z2 − z3)
.

For the following generalization of the Weierstrass function Vn(z)∫∞
Vn(z)

dV√
Pn(V )

= z,

Pn(V ) = 4
(n−2)2

V n + Cn−2V
n−2 + ...+ C0,

we have the following series (re)presentation [6]

Vn(z) = ℘n(z, Cn−2, ..., C0) =
1

z2/(n−2)
− (n− 2)2

4(n+ 2)
Cn−2z

2/(n−2) + ... .
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